-
Notifications
You must be signed in to change notification settings - Fork 0
/
08_inference_merged_model.py
78 lines (59 loc) · 2.1 KB
/
08_inference_merged_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import time
from urllib.request import urlopen
import cupy as cp
import numpy as np
import onnxruntime as ort
import torch
from PIL import Image
from imagenet_classes import IMAGENET2012_CLASSES
img = Image.open(
urlopen(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png"
)
)
def read_image(image: Image.Image):
image = image.convert("RGB")
img_numpy = np.array(image).astype(np.float32)
img_numpy = img_numpy.transpose(2, 0, 1)
img_numpy = np.expand_dims(img_numpy, axis=0)
return img_numpy
providers = [
(
"TensorrtExecutionProvider",
{
"device_id": 0,
"trt_max_workspace_size": 8589934592,
"trt_fp16_enable": True,
"trt_engine_cache_enable": True,
"trt_engine_cache_path": "./trt_cache",
"trt_force_sequential_engine_build": False,
"trt_max_partition_iterations": 10000,
"trt_min_subgraph_size": 1,
"trt_builder_optimization_level": 5,
"trt_timing_cache_enable": True,
},
),
]
session = ort.InferenceSession("merged_model_compose.onnx", providers=providers)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
output = session.run([output_name], {input_name: read_image(img)})
# print(output[0])
# Check the output
output = torch.from_numpy(output[0])
print(output.shape)
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
im_classes = list(IMAGENET2012_CLASSES.values())
class_names = [im_classes[i] for i in top5_class_indices[0]]
# Print class names and probabilities
for name, prob in zip(class_names, top5_probabilities[0]):
print(f"{name}: {prob:.2f}%")
num_images = 1000
start = time.perf_counter()
for i in range(num_images):
output = session.run([output_name], {input_name: read_image(img)})
end = time.perf_counter()
time_taken = end - start
ms_per_image = time_taken / num_images * 1000
fps = num_images / time_taken
print(f"Onnxruntime TensorRT: {ms_per_image:.3f} ms per image, FPS: {fps:.2f}")