-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVerificationOfExperiments.py
303 lines (249 loc) · 13 KB
/
VerificationOfExperiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import glob
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
from srunner.metrics.tools.metrics_log import MetricsLog
import STL
try:
sys.path.append(glob.glob('carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import json
max_longitudinal_acceleration = 3.5
min_longitudinal_brake = 4.0
max_longitudinal_brake = 8.0
max_lateral_acceleration = 0.2
min_lateral_brake = 0.8
def get_rotation_matrix(log, ego_id, adv, j):
ego_trans = np.array(log.get_actor_transform(ego_id, j).get_matrix())
ego_rot = ego_trans[0:3, 0:3].T
adv_trans = np.array(adv.get_transform().get_matrix())
adv_rot = adv_trans[0:3, 0:3].T
return ego_rot, adv_rot
def calculate_minimal_safe_lateral_distance(log, ego, adv, j):
ego_id = ego.id
ego_rot, adv_rot = get_rotation_matrix(log, ego_id, adv, j)
vel = log.get_actor_velocity(ego_id, j)
velocity = np.array([vel.x, vel.y, vel.z])
v_1 = (ego_rot @ velocity)[1]
vel = log.get_actor_velocity(adv.id, j)
velocity = np.array([vel.x, vel.y, vel.z])
v_2 = (adv_rot @ velocity)[1]
delta_time = log.get_delta_time(j)
v_1_p = v_1 + 0.05 * max_lateral_acceleration
v_2_p = v_2 + 0.05 * max_lateral_acceleration
safe_lateral_distance = max(0, ((v_1 + v_1_p) / 2) * delta_time + (v_1_p ** 2) / (2 * min_lateral_brake) -
(((v_2 + v_2_p) / 2) * delta_time - (v_2_p ** 2) / (2 * min_lateral_brake)))
return safe_lateral_distance
def calculate_minimal_safe_longitudinal_distance(log, ego, adv, j):
ego_id = ego.id
ego_rot, adv_rot = get_rotation_matrix(log, ego_id, adv, j)
vel = log.get_actor_velocity(ego_id, j)
velocity = np.array([vel.x, vel.y, vel.z])
v_h = (ego_rot @ velocity)[0]
accel = log.get_actor_acceleration_variation(ego_id, j)
acceleration = np.array([accel.x, accel.y, accel.z])
a_h = (ego_rot @ acceleration)[0]
vel = log.get_actor_velocity(adv.id, j)
velocity = np.array([vel.x, vel.y, vel.z])
v_p = (adv_rot @ velocity)[0]
accel = log.get_actor_acceleration_variation(adv.id, j)
acceleration = np.array([accel.x, accel.y, accel.z])
a_p = (adv_rot @ acceleration)[0]
delta_time = log.get_delta_time(j)
safe_distance = max(0, v_h * delta_time + 0.5 * max_longitudinal_acceleration * (delta_time ** 2)
+ ((v_h + delta_time * max_longitudinal_acceleration) ** 2) / (2 * min_longitudinal_brake)
- (v_p ** 2) / (2 * max_longitudinal_brake))
return safe_distance, v_p, v_h, a_p, a_h
# Works with only two vehicles
def main():
# Client creation
client = carla.Client('localhost', 2000)
client.set_timeout(10.0)
world = client.get_world()
settings = world.get_settings()
settings.synchronous_mode = True
settings.fixed_delta_seconds = 0.05
world.apply_settings(settings)
os.chdir('records')
for file in sorted(glob.glob("*.log")):
print(file.strip('.log'))
if len(glob.glob(file.strip('.log') + '.json')) != 0:
continue
file = os.path.dirname(__file__) + "/records/" + file
info = client.show_recorder_file_info(file, True)
log = MetricsLog(info)
ego_id = log.get_ego_vehicle_id()
x = STL.parse('(x<0)') # x is the longitudinal distance - safe longitudinal distance
u = STL.parse('(u<0.9)') # u is the lateral distance - safe lateral distance
y = STL.parse('(y<1.5)') # y is the relative difference between velocities
z = STL.parse('(z<25)') # z is the distance
t = STL.parse('t') # t is if the ego vehicle is decelerating due to traffic light
time_headway = 1.5
vehicle_mass = 1200
g = -0.25 * (time_headway + 1) / vehicle_mass
a = STL.parse(f'(a<{g})') # a is the acceleration of the ego vehicle
p = STL.parse(f'(p<{g})') # p is the acceleration of the adversary vehicle
phi_lon = x
phi_lat = u
phi2 = ~y | z | t
phi3 = ~a | p.historically(lo=0, hi=3)
robustness_lon = []
robustness_lat = []
robustness_1 = []
robustness_2 = []
sig = {"x": [], "u": [], "y": [], "z": [], "t": [], "a": [], "p": []}
time = []
start_ego, end_ego = log.get_actor_alive_frames(ego_id)
start = start_ego
end = end_ego - 1
duration = log.get_platform_time(end) - log.get_platform_time(start)
points = end - start
time_period = duration
client.replay_file(file, 0, 0, ego_id, False)
for i in range(start):
world.tick()
actor_list = world.get_actors()
ego_vehicle = actor_list.find(ego_id)
scenario_vehicle_ids = log.get_actor_ids_with_role_name("scenario")
for i in range(points):
j = i + start
actor_list = world.get_actors().filter("*vehicle*")
for vehicle_id in scenario_vehicle_ids:
if transform := log.get_actor_transform(vehicle_id, j):
if transform.location.distance(ego_vehicle.get_location()) < 15:
print("Scenario", vehicle_id)
time.append(log.get_platform_time(j))
closest_vehicle_in_front = (None, float('inf'))
closest_vehicle_side = (None, float('inf'))
waypoint = world.get_map().get_waypoint(ego_vehicle.get_location(), project_to_road=False,
lane_type=carla.LaneType.Driving | carla.LaneType.Shoulder)
transform_ego = ego_vehicle.get_transform()
for a in actor_list:
if a.id != ego_id:
waypoint_adv = world.get_map().get_waypoint(a.get_location(), project_to_road=False,
lane_type=carla.LaneType.Driving)
transform_adv = a.get_transform()
distance = transform_ego.location.distance(transform_adv.location)
if (rot := transform_ego.rotation.yaw) < 0:
rot = 360 + transform_ego.rotation.yaw
try:
if waypoint.road_id == waypoint_adv.road_id and waypoint.lane_id == waypoint_adv.lane_id:
if rot < 70 or rot >= 340:
if transform_ego.location.x < transform_adv.location.x:
if closest_vehicle_in_front[1] > distance:
closest_vehicle_in_front = a, distance
elif 70 <= rot < 160:
if transform_ego.location.y < transform_adv.location.y:
if closest_vehicle_in_front[1] > distance:
closest_vehicle_in_front = a, distance
elif 160 <= rot < 250:
if transform_ego.location.x > transform_adv.location.x:
if closest_vehicle_in_front[1] > distance:
closest_vehicle_in_front = a, distance
elif 250 <= rot < 340:
if transform_ego.location.y > transform_adv.location.y:
if closest_vehicle_in_front[1] > distance:
closest_vehicle_in_front = a, distance
except AttributeError:
pass
distance_y = abs(transform_adv.location.y - transform_ego.location.y)
distance_x = abs(transform_adv.location.x - transform_ego.location.x)
try:
if abs(waypoint.lane_id) == 1:
move = int(waypoint.lane_id / abs(waypoint.lane_id))
elif abs(waypoint.lane_id) == 2:
move = int(-waypoint.lane_id / abs(waypoint.lane_id))
if waypoint.road_id == waypoint_adv.road_id and waypoint.lane_id + move == waypoint_adv.lane_id:
if rot < 70 or rot >= 340:
if closest_vehicle_side[1] > distance_y:
closest_vehicle_side = a, distance_y
elif 70 <= rot < 160:
if closest_vehicle_side[1] > distance_x:
closest_vehicle_side = a, distance_x
elif 160 <= rot < 250:
if closest_vehicle_side[1] > distance_y:
closest_vehicle_side = a, distance_y
elif 250 <= rot < 340:
if closest_vehicle_side[1] > distance_x:
closest_vehicle_side = a, distance_x
except AttributeError:
pass
try:
lane_width = waypoint.lane_width / 2
if closest_vehicle_side[0] is not None:
safe_lateral_distance = calculate_minimal_safe_lateral_distance(log, ego_vehicle,
closest_vehicle_side[0], j)
sd_lat = safe_lateral_distance + lane_width
sig["u"].append(closest_vehicle_side[1] - sd_lat)
else:
sig["u"].append(0.9)
except AttributeError:
sig["u"].append(0.9)
if closest_vehicle_in_front[0] is not None:
safe_longitudinal_distance, v_p, v_h, a_p, a_h = calculate_minimal_safe_longitudinal_distance(log,
ego_vehicle, closest_vehicle_in_front[0], j)
sig["x"].append(closest_vehicle_in_front[1] - safe_longitudinal_distance)
sig["y"].append(v_p - v_h)
sig["z"].append(ego_vehicle.get_location().distance(closest_vehicle_in_front[0].get_location()))
sig["t"].append(ego_vehicle.is_at_traffic_light())
sig["a"].append(a_p)
sig["p"].append(a_h)
else:
sig["x"].append(0)
sig["y"].append(1.5)
sig["z"].append(25)
sig["t"].append(0)
sig["a"].append(0)
sig["p"].append(0)
val = STL.evaluate(phi_lon, sig, time, t=i, points=points, time_period=time_period)
val = 1 if val == float('inf') else val
val = 0 if val == float('-inf') else val
robustness_lon.append(val)
val = STL.evaluate(phi_lat, sig, time, t=i, points=points, time_period=time_period)
val = 1 if val == float('inf') else val
val = 0 if val == float('-inf') else val
robustness_lat.append(val)
val = STL.evaluate(phi2, sig, time, t=i, points=points, time_period=time_period)
val = 1 if val == float('inf') else val
val = 0 if val == float('-inf') else val
robustness_1.append(val)
val = STL.evaluate(phi3, sig, time, t=i, points=points, time_period=time_period)
val = 1 if val == float('inf') else val
val = 0 if val == float('-inf') else val
robustness_2.append(val)
world.tick()
client.stop_replayer(keep_actors=False)
vehicles = world.get_actors().filter('vehicle.*')
sensors = world.get_actors().filter('sensors.*')
for a in vehicles:
a.destroy()
for a in sensors:
a.destroy()
world.tick()
with open(file.strip('.log') + ".json", 'w', encoding='utf-8') as f:
json.dump({"robustness_lon": {"sig": robustness_lon, "max": max(robustness_lon), "min": min(robustness_lon), "avg": sum(robustness_lon) / len(robustness_lon)},
"robustness_lat": {"sig": robustness_lat, "max": max(robustness_lat), "min": min(robustness_lat), "avg": sum(robustness_lat) / len(robustness_lat)},
"robustness_1": {"sig": robustness_1, "max": max(robustness_1), "min": min(robustness_1), "avg": sum(robustness_1) / len(robustness_1)},
"robustness_2": {"sig": robustness_2, "max": max(robustness_2), "min": min(robustness_2), "avg": sum(robustness_2) / len(robustness_2)}},
f, indent=4)
# plt.plot(time, sig["x"], time, robustness_lon, "r--")
# plt.show()
# plt.plot(time, sig["u"], time, robustness_lat, "r--")
# plt.show()
# plt.plot(time, sig["y"], time, sig["z"], time, np.array(sig["t"]) * 5, time, robustness_1, "r--")
# plt.show()
# plt.plot(time, sig["a"], time, sig["p"], time, robustness_2, "r--")
# plt.show()
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
pass
finally:
print('\ndone.')