diff --git a/app/assets/images/publications/zhidkikh-2024.png b/app/assets/images/publications/zhidkikh-2024.png new file mode 100644 index 0000000000..632bfb698c Binary files /dev/null and b/app/assets/images/publications/zhidkikh-2024.png differ diff --git a/app/assets/stylesheets/pages/publications.css.scss b/app/assets/stylesheets/pages/publications.css.scss index f15fd5ee68..7d30bf0156 100644 --- a/app/assets/stylesheets/pages/publications.css.scss +++ b/app/assets/stylesheets/pages/publications.css.scss @@ -1,3 +1,7 @@ .publication-image { max-width: inherit; + + img { + max-width: inherit; + } } diff --git a/app/views/pages/publications.html.erb b/app/views/pages/publications.html.erb index 44ed452a5b..560785bba6 100644 --- a/app/views/pages/publications.html.erb +++ b/app/views/pages/publications.html.erb @@ -4,6 +4,41 @@

<%= t '.title' %>

+
+
+

Reproducing Predictive Learning Analytics in CS1: Toward Generalizable and Explainable Models for Enhancing Student Retention

+
+ Denis Zhidkikh, Ville Heilala, Charlotte Van Petegem, Peter Dawyndt, Miitta Järvinen, Sami Viitanen, Bram De Wever, Bart Mesuere, Vesa Lappalainen, Lauri Kettunen, Raija Hämäläinen +
+
+
+
+
+

Abstract

+

+ Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). + General-purpose and interpretable dropout predictions still pose a challenge. + Our study aims to reproduce and extend the data analysis of a privacy-first student pass–fail prediction approach proposed by Van Petegem and colleagues (2022) in a different CS1 course. + Using student submission and self-report data, we investigated the reproducibility of the original approach, the effect of adding self-reports to the model, and the interpretability of the model features. + The results showed that the original approach for student dropout prediction could be successfully reproduced in a different course context and that adding self-report data to the prediction model improved accuracy for the first four weeks. + We also identified relevant features associated with dropout in the CS1 course, such as timely submission of tasks and iterative problem solving. + When analyzing student behaviour, submission data and self-report data were found to complement each other. + The results highlight the importance of transparency and generalizability in learning analytics and the need for future research to identify other factors beyond self-reported aptitude measures and student behaviour that can enhance dropout prediction. +

+

Citation

+

+ Zhidkikh, D., Heilala, V., Van Petegem, C., Dawyndt, P., Järvinen, M., Viitanen, S., De Wever, B., Mesuere, B., Lappalainen, V., Kettunen, L., & Hämäläinen, R. (2024). Reproducing Predictive Learning Analytics in CS1: Toward Generalizable and Explainable Models for Enhancing Student Retention. Journal of Learning Analytics, 1-21. <%= link_to "https://doi.org/10.18608/jla.2024.7979", "https://doi.org/10.18608/jla.2024.7979" %> +

+
+
+ <%= link_to "https://doi.org/10.18608/jla.2024.7979", class: "publication-image" do %> + <%= image_tag "publications/zhidkikh-2024.png" %> + <% end %> +
+
+
+
+

Dodona: Learn to code with a virtual co-teacher that supports active learning

@@ -30,7 +65,9 @@

- <%= image_tag "publications/vanpetegem-2023-2.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1016/j.softx.2023.101578", class: "publication-image" do %> + <%= image_tag "publications/vanpetegem-2023-2.png" %> + <% end %>
@@ -64,7 +101,9 @@

- <%= image_tag "publications/maertens-2023.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1145/3587103.3594166", class: "publication-image" do %> + <%= image_tag "publications/maertens-2023.png" %> + <% end %>
@@ -95,7 +134,9 @@

- <%= image_tag "publications/vanpetegem-2023.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1145/3587103.3594165", class: "publication-image" do %> + <%= image_tag "publications/vanpetegem-2023.png" %> + <% end %>
@@ -129,7 +170,9 @@

- <%= image_tag "publications/strijbol-2023.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1145/3587103.3594189", class: "publication-image" do %> + <%= image_tag "publications/strijbol-2023.png" %> + <% end %>
@@ -162,7 +205,9 @@

- <%= image_tag "publications/strijbol-2022.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1016/j.softx.2023.101404", class: "publication-image" do %> + <%= image_tag "publications/strijbol-2022.png" %> + <% end %>
@@ -191,7 +236,9 @@

- <%= image_tag "publications/vanpetegem-2022.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1177/07356331221085595", class: "publication-image" do %> + <%= image_tag "publications/vanpetegem-2022.png" %> + <% end %>
@@ -223,7 +270,9 @@

- <%= image_tag "publications/maertens-2022.png", class: "publication-image" %> + <%= link_to "https://doi.org/10.1111/jcal.12662", class: "publication-image" do %> + <%= image_tag "publications/maertens-2022.png" %> + <% end %>