-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
264 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import torch | ||
import torch.nn as nn | ||
from torch.utils.data import Dataset | ||
|
||
class BPNetDataset(Dataset): | ||
def __init__(self, data, label): | ||
self.data = data | ||
self.label = label | ||
|
||
def __len__(self): | ||
return len(self.data) | ||
|
||
def __getitem__(self, idx): | ||
return { | ||
'wt_emb': self.data[idx][0], | ||
'mut_emb': self.data[idx][1], | ||
'label': self.label[idx], | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import numpy as np | ||
import random | ||
import tqdm | ||
import os | ||
import wandb | ||
|
||
from torch.utils.data import Dataset, DataLoader | ||
from scipy.stats import pearsonr, spearmanr | ||
from torch.distributions.multinomial import Multinomial | ||
|
||
from bpnet_pytorch import BPNet | ||
from bpnet_pytorch.data import BPNetDataset | ||
|
||
def multinomial_nll(probs, target): | ||
"""Multinomial NLL loss.""" | ||
return -Multinomial(probs=probs).log_prob(target) | ||
|
||
def train(model, train_loader, optimizer, criterion, metrics_f): | ||
model.train() | ||
|
||
running_profiles, running_total_counts = [], [] | ||
running_profile_labels, running_total_count_labels = [], [] | ||
|
||
# Training loop with progressbar. | ||
bar = tqdm.tqdm(train_loader, total=len(train_loader), leave=False) | ||
for idx, batch in enumerate(bar): | ||
seq = batch['seq'].cuda() | ||
profile = batch['profile'].cuda() | ||
total_count = batch['total_count'].cuda() | ||
|
||
optimizer.zero_grad() | ||
out = model(seq) | ||
loss = multinomial_nll(out['profile'], profile) + F.mse_loss(torch.log(1 + out['total_count']), torch.log(1 + total_count)) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
running_profiles.append(out['profile'].detach().cpu()) | ||
running_total_counts.append(out['total_count'].detach().cpu()) | ||
running_profile_labels.append(profile.cpu()) | ||
running_total_count_labels.append(total_count.cpu()) | ||
|
||
if idx % 100 == 0: | ||
running_profiles = torch.cat(running_profiles, dim=0) | ||
running_total_counts = torch.cat(running_total_counts, dim=0) | ||
running_profile_labels = torch.cat(running_profile_labels, dim=0) | ||
running_total_count_labels = torch.cat(running_total_count_labels, dim=0) | ||
|
||
running_loss = multinomial_nll(running_profiles, running_profile_labels) + F.mse_loss(torch.log(1 + running_total_counts), torch.log(1 + running_total_count_labels)) | ||
|
||
loss = running_loss.item() | ||
bar.set_postfix(loss=loss) | ||
wandb.log({ | ||
'train/loss': loss, | ||
}) | ||
|
||
running_output, running_label = [], [] | ||
|
||
def validate(model, val_loader, criterion, metrics_f): | ||
model.eval() | ||
|
||
out_fwd, out_rev, label = [], [], [] | ||
with torch.no_grad(): | ||
for batch in val_loader: | ||
wt_emb, mut_emb = batch['wt_emb'].cuda(), batch['mut_emb'].cuda() | ||
_label = batch['label'].cuda().flatten() | ||
|
||
_out_fwd = model(wt_emb, mut_emb).flatten() | ||
_out_rev = model(mut_emb, wt_emb).flatten() # Swap wt_emb and mut_emb. | ||
|
||
out_fwd.append(_out_fwd.cpu()) | ||
out_rev.append(_out_rev.cpu()) | ||
|
||
label.append(_label.cpu()) | ||
|
||
out_fwd = torch.cat(out_fwd, dim=0) | ||
out_rev = torch.cat(out_rev, dim=0) | ||
label = torch.cat(label, dim=0) | ||
|
||
loss = criterion(out_fwd, label).item() | ||
metrics = {k: f(out_fwd, label) for k, f in metrics_f.items()} | ||
|
||
# Add antisymmetry metrics. | ||
metrics['pearson_fr'] = pearsonr(out_fwd, out_rev)[0] | ||
metrics['delta'] = torch.cat([out_fwd, out_rev], dim=0).mean() | ||
|
||
wandb.log({ | ||
'val/loss': loss, | ||
'val/pearson': metrics['pearson'], | ||
'val/spearman': metrics['spearman'], | ||
'val/pearson_fr': metrics['pearson_fr'], | ||
'val/delta': metrics['delta'], | ||
}) | ||
|
||
return loss, metrics | ||
|
||
def test(model, val_loader, criterion, metrics_f): | ||
model.eval() | ||
|
||
out_fwd, out_rev, label = [], [], [] | ||
with torch.no_grad(): | ||
for batch in val_loader: | ||
wt_emb, mut_emb = batch['wt_emb'].cuda(), batch['mut_emb'].cuda() | ||
_label = batch['label'].cuda().flatten() | ||
|
||
_out_fwd = model(wt_emb, mut_emb).flatten() | ||
_out_rev = model(mut_emb, wt_emb).flatten() # Swap wt_emb and mut_emb. | ||
|
||
out_fwd.append(_out_fwd.cpu()) | ||
out_rev.append(_out_rev.cpu()) | ||
|
||
label.append(_label.cpu()) | ||
|
||
out_fwd = torch.cat(out_fwd, dim=0) | ||
out_rev = torch.cat(out_rev, dim=0) | ||
label = torch.cat(label, dim=0) | ||
|
||
loss = criterion(out_fwd, label).item() | ||
metrics = {k: f(out_fwd, label) for k, f in metrics_f.items()} | ||
|
||
# Add antisymmetry metrics. | ||
metrics['pearson_fr'] = pearsonr(out_fwd, out_rev)[0] | ||
metrics['delta'] = torch.cat([out_fwd, out_rev], dim=0).mean() | ||
|
||
wandb.log({ | ||
'test/loss': loss, | ||
'test/pearson': metrics['pearson'], | ||
'test/spearman': metrics['spearman'], | ||
'test/pearson_fr': metrics['pearson_fr'], | ||
'test/delta': metrics['delta'], | ||
}) | ||
|
||
return loss, metrics | ||
|
||
def seed_everything(seed): | ||
torch.manual_seed(seed) | ||
torch.cuda.manual_seed(seed) | ||
torch.cuda.manual_seed_all(seed) | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
|
||
# Performance drops, so commenting out for now. | ||
# torch.backends.cudnn.benchmark = False | ||
# torch.backends.cudnn.deterministic = True | ||
|
||
def main(): | ||
import pandas as pd | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--train', required=True) | ||
parser.add_argument('--val', required=True) | ||
parser.add_argument('--test', required=True) | ||
parser.add_argument('--output', '-o', required=True) | ||
parser.add_argument('--batch-size', type=int, default=128) | ||
parser.add_argument('--epochs', type=int, default=72) | ||
parser.add_argument('--lr', type=float, default=0.004) | ||
parser.add_argument('--dropout', type=float, default=0.0) | ||
parser.add_argument('--seed', type=int, default=42) | ||
parser.add_argument('--use-wandb', action='store_true', default=False) | ||
args = parser.parse_args() | ||
|
||
seed_everything(args.seed) | ||
if not args.use_wandb: | ||
os.environ['WANDB_MODE'] = 'disabled' | ||
|
||
wandb.init(project='bpnet-pytorch', config=args, reinit=True) | ||
|
||
# Validation: Chromosomes 2, 3, 4 | ||
# Test: Chromosomes 1, 8, 9 | ||
# Train: Rest | ||
train_df = pd.read_csv(args.train) | ||
train_set = BPNetDataset() | ||
|
||
val_df = pd.read_csv(args.val) | ||
val_set = BPNetDataset() | ||
|
||
test_df = pd.read_csv(args.test) | ||
test_set = BPNetDataset() | ||
|
||
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=16, pin_memory=True) | ||
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=16, pin_memory=True) | ||
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=16, pin_memory=True) | ||
|
||
model = BPNet() | ||
model = model.cuda() | ||
|
||
optimizer = optim.Adam(model.parameters(), lr=args.lr) | ||
# TODO: Early stopping | ||
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.97) | ||
criterion = nn.MSELoss() | ||
|
||
metrics_f = { | ||
'pearson': lambda x, y: pearsonr(x, y)[0], | ||
'spearman': lambda x, y: spearmanr(x, y)[0], | ||
} | ||
|
||
best_val_loss = np.inf | ||
best_val_pearson = -np.inf | ||
best_val_spearman = -np.inf | ||
best_test_loss = np.inf | ||
best_test_pearson = -np.inf | ||
best_test_spearman = -np.inf | ||
for epoch in range(args.epochs): | ||
train(model, train_loader, optimizer, criterion, metrics_f) | ||
val_loss, val_metrics = validate(model, val_loader, criterion, metrics_f) | ||
test_loss, test_metrics = test(model, test_loader, criterion, metrics_f) | ||
|
||
if val_loss < best_val_loss: | ||
best_val_loss = val_loss | ||
best_val_pearson = val_metrics['pearson'] | ||
best_val_spearman = val_metrics['spearman'] | ||
|
||
torch.save(model.state_dict(), args.output) | ||
|
||
best_test_loss = test_loss | ||
best_test_pearson = test_metrics['pearson'] | ||
best_test_spearman = test_metrics['spearman'] | ||
|
||
message = f'Epoch {epoch} Validation: loss {val_loss:.4f},' | ||
message += ', '.join([f'{k} {v:.4f}' for k, v in val_metrics.items()]) | ||
print(message) | ||
|
||
message = f'Epoch {epoch} Test: loss {test_loss:.4f},' | ||
message += ', '.join([f'{k} {v:.4f}' for k, v in test_metrics.items()]) | ||
print(message) | ||
|
||
scheduler.step() | ||
|
||
wandb.log({ | ||
'best_val_loss': best_val_loss, | ||
'best_val_pearson': best_val_pearson, | ||
'best_val_spearman': best_val_spearman, | ||
'test_loss': best_test_loss, | ||
'test_pearson': best_test_pearson, | ||
'test_spearman': best_test_spearman, | ||
}) | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters