-
Notifications
You must be signed in to change notification settings - Fork 24
/
vgg19.py
160 lines (121 loc) · 5.96 KB
/
vgg19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import tensorflow as tf
import numpy as np
import time
import inspect
'''
I modified the source code from https://github.com/machrisaa/tensorflow-vgg/blob/master/vgg19.py
to use generally VGG19 pre-trained model
1. I removed input size limitation
2. I separated relu_layer and conv_layer
3. I removed the fully connected layer because these layer are no need for image style transfer
'''
VGG_MEAN = [103.939, 116.779, 123.68]
class Vgg19:
def __init__(self, vgg19_npy_path=None):
if vgg19_npy_path is None:
path = inspect.getfile(Vgg19)
path = os.path.abspath(os.path.join(path, os.pardir))
path = os.path.join(path, "vgg19.npy")
vgg19_npy_path = path
print(vgg19_npy_path)
self.data_dict = np.load(vgg19_npy_path, encoding='latin1').item()
print("npy file loaded")
def build(self, rgb):
"""
load variable from npy to build the VGG
:param rgb: rgb image [batch, height, width, 3] values scaled [-1, 1]
"""
start_time = time.time()
print("build model started")
rgb_scaled = ((rgb + 1) * 255.0) / 2.0
# Convert RGB to BGR
red, green, blue = tf.split(axis=3, num_or_size_splits=3, value = rgb_scaled)
# assert red.get_shape().as_list()[1:] == [224, 224, 1]
# assert green.get_shape().as_list()[1:] == [224, 224, 1]
# assert blue.get_shape().as_list()[1:] == [224, 224, 1]
bgr = tf.concat(axis=3, values=[
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
])
# assert bgr.get_shape().as_list()[1:] == [224, 224, 3]
self.conv1_1 = self.conv_layer(bgr, "conv1_1")
self.relu1_1 = self.relu_layer(self.conv1_1, "relu1_1")
self.conv1_2 = self.conv_layer(self.relu1_1, "conv1_2")
self.relu1_2 = self.relu_layer(self.conv1_2, "relu1_2")
self.pool1 = self.max_pool(self.relu1_2, 'pool1')
self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")
self.relu2_1 = self.relu_layer(self.conv2_1, "relu2_1")
self.conv2_2 = self.conv_layer(self.relu2_1, "conv2_2")
self.relu2_2 = self.relu_layer(self.conv2_2, "relu2_2")
self.pool2 = self.max_pool(self.relu2_2, 'pool2')
self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")
self.relu3_1 = self.relu_layer(self.conv3_1, "relu3_1")
self.conv3_2 = self.conv_layer(self.relu3_1, "conv3_2")
self.relu3_2 = self.relu_layer(self.conv3_2, "relu3_2")
self.conv3_3 = self.conv_layer(self.relu3_2, "conv3_3")
self.relu3_3 = self.relu_layer(self.conv3_3, "relu3_3")
self.conv3_4 = self.conv_layer(self.relu3_3, "conv3_4")
self.relu3_4 = self.relu_layer(self.conv3_4, "relu3_4")
self.pool3 = self.max_pool(self.relu3_4, 'pool3')
self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")
self.relu4_1 = self.relu_layer(self.conv4_1, "relu4_1")
self.conv4_2 = self.conv_layer(self.relu4_1, "conv4_2")
self.relu4_2 = self.relu_layer(self.conv4_2, "relu4_2")
self.conv4_3 = self.conv_layer(self.relu4_2, "conv4_3")
self.relu4_3 = self.relu_layer(self.conv4_3, "relu4_3")
self.conv4_4 = self.conv_layer(self.relu4_3, "conv4_4")
self.relu4_4 = self.relu_layer(self.conv4_4, "relu4_4")
self.pool4 = self.max_pool(self.relu4_4, 'pool4')
self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")
self.relu5_1 = self.relu_layer(self.conv5_1, "relu5_1")
self.conv5_2 = self.conv_layer(self.relu5_1, "conv5_2")
self.relu5_2 = self.relu_layer(self.conv5_2, "relu5_2")
self.conv5_3 = self.conv_layer(self.relu5_2, "conv5_3")
self.relu5_3 = self.relu_layer(self.conv5_3, "relu5_3")
self.conv5_4 = self.conv_layer(self.relu5_3, "conv5_4")
self.relu5_4 = self.relu_layer(self.conv5_4, "relu5_4")
self.pool5 = self.max_pool(self.conv5_4, 'pool5')
# self.fc6 = self.fc_layer(self.pool5, "fc6")
# assert self.fc6.get_shape().as_list()[1:] == [4096]
# self.relu6 = tf.nn.relu(self.fc6)
# self.fc7 = self.fc_layer(self.relu6, "fc7")
# self.relu7 = tf.nn.relu(self.fc7)
# self.fc8 = self.fc_layer(self.relu7, "fc8")
# self.prob = tf.nn.softmax(self.fc8, name="prob")
self.data_dict = None
print(("build model finished: %ds" % (time.time() - start_time)))
def avg_pool(self, bottom, name):
return tf.nn.avg_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def relu_layer(self, bottom, name):
return tf.nn.relu(bottom, name = name)
def conv_layer(self, bottom, name):
with tf.variable_scope(name):
filt = self.get_conv_filter(name)
conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
conv_biases = self.get_bias(name)
bias = tf.nn.bias_add(conv, conv_biases)
# relu = tf.nn.relu(bias)
return bias
def fc_layer(self, bottom, name):
with tf.variable_scope(name):
shape = bottom.get_shape().as_list()
dim = 1
for d in shape[1:]:
dim *= d
x = tf.reshape(bottom, [-1, dim])
weights = self.get_fc_weight(name)
biases = self.get_bias(name)
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
fc = tf.nn.bias_add(tf.matmul(x, weights), biases)
return fc
def get_conv_filter(self, name):
return tf.constant(self.data_dict[name][0], name="filter")
def get_bias(self, name):
return tf.constant(self.data_dict[name][1], name="biases")
def get_fc_weight(self, name):
return tf.constant(self.data_dict[name][0], name="weights")