-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcompute_dl3dv_metrics.py
177 lines (148 loc) · 5.66 KB
/
compute_dl3dv_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from glob import glob
import torch
import json
import math
from tqdm import tqdm
import argparse
import re
from ..evaluation.metrics import (
compute_lpips,
compute_psnr,
compute_ssim,
compute_dists,
)
from ..misc.image_io import load_image
import os
from torch.utils.data import Dataset, DataLoader
from PIL import Image
class SimpleImageDataset(Dataset):
def __init__(self, image_dict):
self.image_dict = image_dict
self.gt_dir = image_dict.pop("GT")
self.image_names = self.list_images(self.gt_dir)
def list_images(self, gt_dir):
return sorted([x for x in os.listdir(gt_dir) if x.endswith("png")]) # [:10]
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
cur_image_name = self.image_names[idx]
out_dict = {"GT": load_image(os.path.join(self.gt_dir, cur_image_name))}
for method_name, method_dir in self.image_dict.items():
out_dict[method_name] = load_image(os.path.join(method_dir, cur_image_name))
return out_dict
def print_average_scores(scene_dict, method_name):
try:
print_method_name = re.match(r"^(.*)_epoch", method_name).group(1)
except:
return
msg = f"{print_method_name:<25}:"
for k, v in scene_dict.items():
msg = msg + f" {k.upper()}:{(sum(v)/len(v)):.3f},"
print(msg)
def main(out_dir, use_postpro=False, vtype="ctx5"):
device = "cuda"
if vtype == "ctx5":
methods_roots = {
"GT": "outputs/test/dl3dv_480P_ctx5_tgt56_tsplit4/ImagesGT",
"seqbyseq": "outputs/test/dl3dv_480P_ctx5_tgt56_seqbyseq/ImagesRefined0",
"tsplit4": "outputs/test/dl3dv_480P_ctx5_tgt56_tsplit4/ImagesRefined0",
}
elif vtype == "n150":
# update methods_roots path here
pass
elif vtype == "ctx3":
# update methods_roots path here
pass
elif vtype == "ctx4":
# update methods_roots path here
pass
elif vtype == "ctx6":
# update methods_roots path here
pass
elif vtype == "ctx7":
# update methods_roots path here
pass
else:
raise Exception(f"Please set paths for {vtype}.")
if use_postpro:
updated_methods_roots = {}
for k, v in methods_roots.items():
if k == "GT":
updated_methods_roots[k] = v
else:
v_list = v.split("/")
updated_v = "/".join([*v_list[:-1], "ImagesPostprocessed0V2"])
updated_k = f"{k}_pp"
updated_methods_roots[updated_k] = updated_v
methods_roots = updated_methods_roots
# print(methods_roots)
# return
# check image length
for k, v in methods_roots.items():
img_len = len(glob(os.path.join(v, "*.png")))
print(k, img_len)
assert img_len == 140 * 56, f"Length err {img_len}; Double check {v}"
dataset = SimpleImageDataset(image_dict=methods_roots)
dataloader = DataLoader(dataset, batch_size=32, shuffle=False, num_workers=10)
methods_metrics = {
k: {m: [] for m in ["psnr", "ssim", "lpips", "dists"]}
for k in methods_roots.keys()
}
for data_item in tqdm(dataloader, desc="looping data..."):
gt_images = data_item.pop("GT").to(device)
for method_name, method_images in data_item.items():
method_images = method_images.to(device)
methods_metrics[method_name]["psnr"].extend(
compute_psnr(gt_images, method_images).detach().cpu().tolist()
)
methods_metrics[method_name]["ssim"].extend(
compute_ssim(gt_images, method_images).detach().cpu().tolist()
)
methods_metrics[method_name]["lpips"].extend(
compute_lpips(gt_images, method_images).detach().cpu().tolist()
)
methods_metrics[method_name]["dists"].extend(
compute_dists(gt_images, method_images).detach().cpu().tolist()
)
# print final scores
for method_name, scene_dict in methods_metrics.items():
# dump the total scores
out_name = methods_roots[method_name].strip("/").split("/")[-2]
out_name = f"{method_name}_{out_name}"
with open(os.path.join(out_dir, f"{out_name}.json"), "w") as f:
json.dump(scene_dict, f)
# print average scores
print_average_scores(scene_dict, out_name)
print("All Done! Compute the FID score via:")
print(f"python -m pytorch_fid --device cuda:0 {methods_roots['GT']} {methods_roots['seqbyseq']}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--print_json", action="store_true")
parser.add_argument("--use_pp", action="store_true", dest="compute metrics with post-processed images")
parser.add_argument(
"--vtype",
type=str,
default="ctx5",
choices=["ctx5", "ctx3", "ctx4", "ctx6", "ctx7", "n150"],
)
args = parser.parse_args()
if args.vtype == "ctx5":
out_dir = "outputs/test_scores/dl3dv_480P"
else:
out_dir = f"outputs/test_scores/dl3dv_480P_{args.vtype}"
if args.against_encdec:
out_dir = f"{out_dir}_encdec"
os.makedirs(out_dir, exist_ok=True)
if args.print_json:
json_files = sorted(glob(os.path.join(out_dir, "*.json")))
for json_file in json_files:
with open(json_file, "r") as f:
scene_dict = json.load(f)
method_name = os.path.basename(json_file).split(".")[0]
print_average_scores(scene_dict, method_name)
else:
main(
out_dir,
use_postpro=args.use_pp,
vtype=args.vtype,
)