forked from memcached/memcached
-
Notifications
You must be signed in to change notification settings - Fork 5
/
proto_proxy.c
1629 lines (1457 loc) · 59.6 KB
/
proto_proxy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
/*
* Functions for handling the proxy layer. wraps text protocols
*
* NOTE: many lua functions generate pointers via "lua_newuserdatauv" or
* similar. Normal memory checking isn't done as lua will throw a high level
* error if malloc fails. Must keep this in mind while allocating data so any
* manually malloc'ed information gets freed properly.
*/
#include "proxy.h"
#define PROCESS_MULTIGET true
#define PROCESS_NORMAL false
#define PROXY_GC_BACKGROUND_SECONDS 2
static void proxy_process_command(conn *c, char *command, size_t cmdlen, bool multiget);
static void *mcp_profile_alloc(void *ud, void *ptr, size_t osize, size_t nsize);
/******** EXTERNAL FUNCTIONS ******/
// functions starting with _ are breakouts for the public functions.
static inline void _proxy_advance_lastkb(lua_State *L, LIBEVENT_THREAD *t) {
int new_kb = lua_gc(L, LUA_GCCOUNT);
// We need to slew the increase in "gc pause" because the lua GC actually
// needs to run twice to free a userdata: once to run the _gc's and again
// to actually clean up the object.
// Meaning we will continually increase in size.
if (new_kb > t->proxy_vm_last_kb) {
new_kb = t->proxy_vm_last_kb + (new_kb - t->proxy_vm_last_kb) * 0.50;
}
// remove the memory freed during this cycle so we can kick off the GC
// early if we're very aggressively making garbage.
// carry our negative delta forward so a huge reclaim can push for a
// couple cycles.
if (t->proxy_vm_negative_delta >= new_kb) {
t->proxy_vm_negative_delta -= new_kb;
new_kb = 1;
} else {
new_kb -= t->proxy_vm_negative_delta;
t->proxy_vm_negative_delta = 0;
}
t->proxy_vm_last_kb = new_kb;
}
// The lua GC is paused while running requests. Run it manually inbetween
// processing network events.
void proxy_gc_poke(LIBEVENT_THREAD *t) {
lua_State *L = t->L;
struct proxy_int_stats *is = t->proxy_int_stats;
int vm_kb = lua_gc(L, LUA_GCCOUNT) + t->proxy_vm_extra_kb;
if (t->proxy_vm_last_kb == 0) {
t->proxy_vm_last_kb = vm_kb;
}
WSTAT_L(t);
is->vm_memory_kb = vm_kb;
WSTAT_UL(t);
// equivalent of luagc "pause" value
int last = t->proxy_vm_last_kb;
if (t->proxy_vm_gcrunning <= 0 && vm_kb > last * 2) {
t->proxy_vm_gcrunning = 1;
//fprintf(stderr, "PROXYGC: proxy_gc_poke START [cur: %d - last: %d]\n", vm_kb, last);
}
// We configure small GC "steps" then increase the number of times we run
// a step based on current memory usage.
if (t->proxy_vm_gcrunning > 0) {
t->proxy_vm_needspoke = false;
int loops = t->proxy_vm_gcrunning;
int done = 0;
/*fprintf(stderr, "PROXYGC: proxy_gc_poke [cur: %d - last: %d - loops: %d]\n",
vm_kb,
t->proxy_vm_last_kb,
loops);*/
while (loops-- && !done) {
// reset counters once full GC cycle has completed
done = lua_gc(L, LUA_GCSTEP, 0);
}
int vm_kb_after = lua_gc(L, LUA_GCCOUNT);
int vm_kb_clean = vm_kb - t->proxy_vm_extra_kb;
if (vm_kb_clean > vm_kb_after) {
// track the amount of memory freed during the GC cycle.
t->proxy_vm_negative_delta += vm_kb_clean - vm_kb_after;
}
if (done) {
_proxy_advance_lastkb(L, t);
t->proxy_vm_extra_kb = 0;
t->proxy_vm_gcrunning = 0;
WSTAT_L(t);
is->vm_gc_runs++;
WSTAT_UL(t);
//fprintf(stderr, "PROXYGC: proxy_gc_poke COMPLETE [cur: %d next: %d]\n", lua_gc(L, LUA_GCCOUNT), t->proxy_vm_last_kb);
}
// increase the aggressiveness by memory bloat level.
if (t->proxy_vm_gcrunning && (last*2) + (last * t->proxy_vm_gcrunning*0.25) < vm_kb) {
t->proxy_vm_gcrunning++;
//fprintf(stderr, "PROXYGC: proxy_gc_poke INCREASING AGGRESSIVENESS [cur: %d - aggro: %d]\n", t->proxy_vm_last_kb, t->proxy_vm_gcrunning);
} else if (t->proxy_vm_gcrunning > 1) {
// memory can drop during a run, let the GC slow down again.
t->proxy_vm_gcrunning--;
//fprintf(stderr, "PROXYGC: proxy_gc_poke DECREASING AGGRESSIVENESS [cur: %d - aggro: %d]\n", t->proxy_vm_last_kb, t->proxy_vm_gcrunning);
}
}
}
// every couple seconds we force-run one GC step.
// this is needed until after API1 is retired and pool objects are no longer
// managed by the GC.
// We use a negative value so a "timer poke" GC run doesn't cause requests to
// suddenly aggressively run the GC.
static void proxy_gc_timerpoke(evutil_socket_t fd, short event, void *arg) {
LIBEVENT_THREAD *t = arg;
struct timeval next = { PROXY_GC_BACKGROUND_SECONDS, 0 };
evtimer_add(t->proxy_gc_timer, &next);
// if GC ran within the last few seconds, don't do anything.
if (!t->proxy_vm_needspoke) {
t->proxy_vm_needspoke = true;
return;
}
// if we weren't told to skip and there's otherwise no GC running, start a
// GC run.
if (t->proxy_vm_gcrunning == 0) {
t->proxy_vm_gcrunning = -1;
}
// only advance GC if we're doing our own timer run.
if (t->proxy_vm_gcrunning == -1 && lua_gc(t->L, LUA_GCSTEP, 0)) {
_proxy_advance_lastkb(t->L, t);
t->proxy_vm_extra_kb = 0;
t->proxy_vm_gcrunning = 0;
}
}
bool proxy_bufmem_checkadd(LIBEVENT_THREAD *t, int len) {
bool oom = false;
pthread_mutex_lock(&t->proxy_limit_lock);
if (t->proxy_buffer_memory_used > t->proxy_buffer_memory_limit) {
oom = true;
} else {
t->proxy_buffer_memory_used += len;
}
pthread_mutex_unlock(&t->proxy_limit_lock);
return oom;
}
// see also: process_extstore_stats()
void proxy_stats(void *arg, ADD_STAT add_stats, void *c) {
if (arg == NULL) {
return;
}
proxy_ctx_t *ctx = arg;
STAT_L(ctx);
APPEND_STAT("proxy_config_reloads", "%llu", (unsigned long long)ctx->global_stats.config_reloads);
APPEND_STAT("proxy_config_reload_fails", "%llu", (unsigned long long)ctx->global_stats.config_reload_fails);
APPEND_STAT("proxy_config_cron_runs", "%llu", (unsigned long long)ctx->global_stats.config_cron_runs);
APPEND_STAT("proxy_config_cron_fails", "%llu", (unsigned long long)ctx->global_stats.config_cron_fails);
APPEND_STAT("proxy_backend_total", "%llu", (unsigned long long)ctx->global_stats.backend_total);
APPEND_STAT("proxy_backend_marked_bad", "%llu", (unsigned long long)ctx->global_stats.backend_marked_bad);
APPEND_STAT("proxy_backend_failed", "%llu", (unsigned long long)ctx->global_stats.backend_failed);
APPEND_STAT("proxy_request_failed_depth", "%llu", (unsigned long long)ctx->global_stats.request_failed_depth);
STAT_UL(ctx);
}
void process_proxy_stats(void *arg, ADD_STAT add_stats, void *c) {
char key_str[STAT_KEY_LEN];
struct proxy_int_stats istats = {0};
uint64_t req_limit = 0;
uint64_t buffer_memory_limit = 0;
uint64_t buffer_memory_used = 0;
if (!arg) {
return;
}
proxy_ctx_t *ctx = arg;
STAT_L(ctx);
req_limit = ctx->active_req_limit;
buffer_memory_limit = ctx->buffer_memory_limit;
// prepare aggregated counters.
struct proxy_user_stats_entry *us = ctx->user_stats;
int stats_num = ctx->user_stats_num;
uint64_t counters[stats_num];
memset(counters, 0, sizeof(counters));
// TODO (v3): more globals to remove and/or change API method.
// aggregate worker thread counters.
for (int x = 0; x < settings.num_threads; x++) {
LIBEVENT_THREAD *t = get_worker_thread(x);
struct proxy_user_stats *tus = t->proxy_user_stats;
struct proxy_int_stats *is = t->proxy_int_stats;
WSTAT_L(t);
for (int i = 0; i < CMD_FINAL; i++) {
istats.counters[i] += is->counters[i];
}
istats.vm_gc_runs += is->vm_gc_runs;
istats.vm_memory_kb += is->vm_memory_kb;
if (tus && tus->num_stats >= stats_num) {
for (int i = 0; i < stats_num; i++) {
counters[i] += tus->counters[i];
}
}
WSTAT_UL(t);
pthread_mutex_lock(&t->proxy_limit_lock);
buffer_memory_used += t->proxy_buffer_memory_used;
pthread_mutex_unlock(&t->proxy_limit_lock);
}
// return all of the user generated stats
if (ctx->user_stats_namebuf) {
char vbuf[INCR_MAX_STORAGE_LEN];
char *e = NULL; // ptr into vbuf
const char *pfx = "user_";
const size_t pfxlen = strlen(pfx);
for (int x = 0; x < stats_num; x++) {
if (us[x].cname) {
char *name = ctx->user_stats_namebuf + us[x].cname;
size_t nlen = strlen(name);
if (nlen > STAT_KEY_LEN-6) {
// impossible, but for paranoia.
nlen = STAT_KEY_LEN-6;
}
// avoiding an snprintf call for some performance ("user_%s")
memcpy(key_str, pfx, pfxlen);
memcpy(key_str+pfxlen, name, nlen);
key_str[pfxlen+nlen] = '\0';
// APPEND_STAT() calls another snprintf, which calls our
// add_stats argument. Lets skip yet another snprintf with
// some unrolling.
e = itoa_u64(counters[x], vbuf);
*(e+1) = '\0';
add_stats(key_str, pfxlen+nlen, vbuf, e-vbuf, c);
}
}
}
STAT_UL(ctx);
if (buffer_memory_limit == UINT64_MAX) {
buffer_memory_limit = 0;
} else {
buffer_memory_limit *= settings.num_threads;
}
if (req_limit == UINT64_MAX) {
req_limit = 0;
} else {
req_limit *= settings.num_threads;
}
// return proxy counters
APPEND_STAT("active_req_limit", "%llu", (unsigned long long)req_limit);
APPEND_STAT("buffer_memory_limit", "%llu", (unsigned long long)buffer_memory_limit);
APPEND_STAT("buffer_memory_used", "%llu", (unsigned long long)buffer_memory_used);
APPEND_STAT("vm_gc_runs", "%llu", (unsigned long long)istats.vm_gc_runs);
APPEND_STAT("vm_memory_kb", "%llu", (unsigned long long)istats.vm_memory_kb);
APPEND_STAT("cmd_mg", "%llu", (unsigned long long)istats.counters[CMD_MG]);
APPEND_STAT("cmd_ms", "%llu", (unsigned long long)istats.counters[CMD_MS]);
APPEND_STAT("cmd_md", "%llu", (unsigned long long)istats.counters[CMD_MD]);
APPEND_STAT("cmd_mn", "%llu", (unsigned long long)istats.counters[CMD_MN]);
APPEND_STAT("cmd_ma", "%llu", (unsigned long long)istats.counters[CMD_MA]);
APPEND_STAT("cmd_me", "%llu", (unsigned long long)istats.counters[CMD_ME]);
APPEND_STAT("cmd_get", "%llu", (unsigned long long)istats.counters[CMD_GET]);
APPEND_STAT("cmd_gat", "%llu", (unsigned long long)istats.counters[CMD_GAT]);
APPEND_STAT("cmd_set", "%llu", (unsigned long long)istats.counters[CMD_SET]);
APPEND_STAT("cmd_add", "%llu", (unsigned long long)istats.counters[CMD_ADD]);
APPEND_STAT("cmd_cas", "%llu", (unsigned long long)istats.counters[CMD_CAS]);
APPEND_STAT("cmd_gets", "%llu", (unsigned long long)istats.counters[CMD_GETS]);
APPEND_STAT("cmd_gats", "%llu", (unsigned long long)istats.counters[CMD_GATS]);
APPEND_STAT("cmd_incr", "%llu", (unsigned long long)istats.counters[CMD_INCR]);
APPEND_STAT("cmd_decr", "%llu", (unsigned long long)istats.counters[CMD_DECR]);
APPEND_STAT("cmd_touch", "%llu", (unsigned long long)istats.counters[CMD_TOUCH]);
APPEND_STAT("cmd_append", "%llu", (unsigned long long)istats.counters[CMD_APPEND]);
APPEND_STAT("cmd_prepend", "%llu", (unsigned long long)istats.counters[CMD_PREPEND]);
APPEND_STAT("cmd_delete", "%llu", (unsigned long long)istats.counters[CMD_DELETE]);
APPEND_STAT("cmd_replace", "%llu", (unsigned long long)istats.counters[CMD_REPLACE]);
}
void process_proxy_funcstats(void *arg, ADD_STAT add_stats, void *c) {
char key_str[STAT_KEY_LEN];
if (!arg) {
return;
}
proxy_ctx_t *ctx = arg;
lua_State *L = ctx->proxy_sharedvm;
pthread_mutex_lock(&ctx->sharedvm_lock);
// iterate all of the named function slots
lua_pushnil(L);
while (lua_next(L, SHAREDVM_FGEN_IDX) != 0) {
int n = lua_tointeger(L, -1);
lua_pop(L, 1); // drop the value, leave the key.
if (n != 0) {
// reuse the key. make a copy since rawget will pop it.
lua_pushvalue(L, -1);
lua_rawget(L, SHAREDVM_FGENSLOT_IDX);
int slots = lua_tointeger(L, -1);
lua_pop(L, 1); // drop the slot count.
// now grab the name key.
const char *name = lua_tostring(L, -1);
snprintf(key_str, STAT_KEY_LEN-1, "funcs_%s", name);
APPEND_STAT(key_str, "%d", n);
snprintf(key_str, STAT_KEY_LEN-1, "slots_%s", name);
APPEND_STAT(key_str, "%d", slots);
} else {
// TODO: It is safe to delete keys here. Slightly complex so low
// priority.
}
}
pthread_mutex_unlock(&ctx->sharedvm_lock);
}
void process_proxy_bestats(void *arg, ADD_STAT add_stats, void *c) {
char key_str[STAT_KEY_LEN];
if (!arg) {
return;
}
proxy_ctx_t *ctx = arg;
lua_State *L = ctx->proxy_sharedvm;
pthread_mutex_lock(&ctx->sharedvm_lock);
// iterate all of the listed backends
lua_pushnil(L);
while (lua_next(L, SHAREDVM_BACKEND_IDX) != 0) {
int n = lua_tointeger(L, -1);
lua_pop(L, 1); // drop the value, leave the key.
if (n != 0) {
// now grab the name key.
const char *name = lua_tostring(L, -1);
snprintf(key_str, STAT_KEY_LEN-1, "bad_%s", name);
APPEND_STAT(key_str, "%d", n);
} else {
// delete keys of backends that are no longer bad or no longer
// exist to keep the table small.
const char *name = lua_tostring(L, -1);
lua_pushnil(L);
lua_setfield(L, SHAREDVM_BACKEND_IDX, name);
}
}
pthread_mutex_unlock(&ctx->sharedvm_lock);
}
// start the centralized lua state and config thread.
void *proxy_init(bool use_uring, bool proxy_memprofile) {
proxy_ctx_t *ctx = calloc(1, sizeof(proxy_ctx_t));
ctx->use_uring = use_uring;
ctx->memprofile = proxy_memprofile;
pthread_mutex_init(&ctx->config_lock, NULL);
pthread_cond_init(&ctx->config_cond, NULL);
pthread_mutex_init(&ctx->worker_lock, NULL);
pthread_cond_init(&ctx->worker_cond, NULL);
pthread_mutex_init(&ctx->manager_lock, NULL);
pthread_cond_init(&ctx->manager_cond, NULL);
pthread_mutex_init(&ctx->stats_lock, NULL);
ctx->active_req_limit = UINT64_MAX;
ctx->buffer_memory_limit = UINT64_MAX;
// FIXME (v2): default defines.
ctx->tunables.tcp_keepalive = false;
ctx->tunables.backend_failure_limit = 3;
ctx->tunables.connect.tv_sec = 5;
ctx->tunables.retry.tv_sec = 3;
ctx->tunables.read.tv_sec = 3;
ctx->tunables.flap_backoff_ramp = 1.5;
ctx->tunables.flap_backoff_max = 3600;
ctx->tunables.backend_depth_limit = 0;
ctx->tunables.max_ustats = MAX_USTATS_DEFAULT;
ctx->tunables.use_iothread = false;
ctx->tunables.use_tls = false;
STAILQ_INIT(&ctx->manager_head);
lua_State *L = NULL;
if (ctx->memprofile) {
struct mcp_memprofile *prof = calloc(1, sizeof(struct mcp_memprofile));
prof->id = ctx->memprofile_thread_counter++;
L = lua_newstate(mcp_profile_alloc, prof);
} else {
L = luaL_newstate();
}
ctx->proxy_state = L;
luaL_openlibs(L);
// NOTE: might need to differentiate the libs yes?
proxy_register_libs(ctx, NULL, L);
// Create the cron table.
lua_newtable(L);
ctx->cron_ref = luaL_ref(L, LUA_REGISTRYINDEX);
ctx->cron_next = INT_MAX;
// set up the shared state VM. Used by short-lock events (counters/state)
// for global visibility.
pthread_mutex_init(&ctx->sharedvm_lock, NULL);
ctx->proxy_sharedvm = luaL_newstate();
luaL_openlibs(ctx->proxy_sharedvm);
// we keep info tables in the top level stack so we don't have to
// constantly fetch them from registry.
lua_newtable(ctx->proxy_sharedvm); // fgen count
lua_newtable(ctx->proxy_sharedvm); // fgen slot count
lua_newtable(ctx->proxy_sharedvm); // backend down status
// Create/start the IO thread, which we need before servers
// start getting created.
proxy_event_thread_t *t = calloc(1, sizeof(proxy_event_thread_t));
ctx->proxy_io_thread = t;
proxy_init_event_thread(t, ctx, NULL);
pthread_create(&t->thread_id, NULL, proxy_event_thread, t);
thread_setname(t->thread_id, "mc-prx-io");
_start_proxy_config_threads(ctx);
return ctx;
}
// Initialize the VM for an individual worker thread.
void proxy_thread_init(void *ctx, LIBEVENT_THREAD *thr) {
assert(ctx != NULL);
assert(thr != NULL);
// Create the hook table.
thr->proxy_hooks = calloc(CMD_SIZE, sizeof(struct proxy_hook));
if (thr->proxy_hooks == NULL) {
fprintf(stderr, "Failed to allocate proxy hooks\n");
exit(EXIT_FAILURE);
}
thr->proxy_int_stats = calloc(1, sizeof(struct proxy_int_stats));
if (thr->proxy_int_stats == NULL) {
fprintf(stderr, "Failed to allocate proxy thread stats\n");
exit(EXIT_FAILURE);
}
pthread_mutex_init(&thr->proxy_limit_lock, NULL);
thr->proxy_ctx = ctx;
// Initialize the lua state.
proxy_ctx_t *pctx = ctx;
lua_State *L = NULL;
if (pctx->memprofile) {
struct mcp_memprofile *prof = calloc(1, sizeof(struct mcp_memprofile));
prof->id = pctx->memprofile_thread_counter++;
L = lua_newstate(mcp_profile_alloc, prof);
} else {
L = luaL_newstate();
}
// With smaller requests the default incremental collector appears to
// never complete. With this simple tuning (def-1, def, def) it seems
// fine.
// We can't use GCGEN until we manage pools with reference counting, as
// they may never hit GC and thus never release their connection
// resources.
lua_gc(L, LUA_GCINC, 199, 100, 12);
lua_gc(L, LUA_GCSTOP); // handle GC on our own schedule.
thr->L = L;
luaL_openlibs(L);
proxy_register_libs(ctx, thr, L);
// TODO: srand on time? do we need to bother?
for (int x = 0; x < 3; x++) {
thr->proxy_rng[x] = rand();
}
thr->proxy_gc_timer = evtimer_new(thr->base, proxy_gc_timerpoke, thr);
// kick off the timer loop.
proxy_gc_timerpoke(0, 0, thr);
// Create a proxy event thread structure to piggyback on the worker.
proxy_event_thread_t *t = calloc(1, sizeof(proxy_event_thread_t));
thr->proxy_event_thread = t;
proxy_init_event_thread(t, ctx, thr->base);
}
// ctx_stack is a stack of io_pending_proxy_t's.
// head of q->s_ctx is the "newest" request so we must push into the head
// of the next queue, as requests are dequeued from the head
void proxy_submit_cb(io_queue_t *q) {
proxy_event_thread_t *e = ((proxy_ctx_t *)q->ctx)->proxy_io_thread;
io_pending_proxy_t *p = q->stack_ctx;
io_head_t head;
be_head_t w_head; // worker local stack.
STAILQ_INIT(&head);
STAILQ_INIT(&w_head);
// NOTE: responses get returned in the correct order no matter what, since
// mc_resp's are linked.
// we just need to ensure stuff is parsed off the backend in the correct
// order.
// So we can do with a single list here, but we need to repair the list as
// responses are parsed. (in the req_remaining-- section)
// TODO (v2):
// - except we can't do that because the deferred IO stack isn't
// compatible with queue.h.
// So for now we build the secondary list with an STAILQ, which
// can be transplanted/etc.
while (p) {
mcp_backend_t *be;
P_DEBUG("%s: queueing req for backend: %p\n", __func__, (void *)p);
if (p->qcount_incr) {
// funny workaround: awaiting IOP's don't count toward
// resuming a connection, only the completion of the await
// condition.
q->count++;
}
if (p->await_background) {
P_DEBUG("%s: fast-returning await_background object: %p\n", __func__, (void *)p);
// intercept await backgrounds
// this call cannot recurse if we're on the worker thread,
// since the worker thread has to finish executing this
// function in order to pick up the returned IO.
return_io_pending((io_pending_t *)p);
p = p->next;
continue;
}
be = p->backend;
if (be->use_io_thread) {
STAILQ_INSERT_HEAD(&head, p, io_next);
} else {
// emulate some of handler_dequeue()
STAILQ_INSERT_HEAD(&be->io_head, p, io_next);
assert(be->depth > -1);
be->depth++;
if (!be->stacked) {
be->stacked = true;
STAILQ_INSERT_TAIL(&w_head, be, be_next);
}
}
p = p->next;
}
// clear out the submit queue so we can re-queue new IO's inline.
q->stack_ctx = NULL;
if (!STAILQ_EMPTY(&head)) {
bool do_notify = false;
P_DEBUG("%s: submitting queue to IO thread\n", __func__);
// Transfer request stack to event thread.
pthread_mutex_lock(&e->mutex);
if (STAILQ_EMPTY(&e->io_head_in)) {
do_notify = true;
}
STAILQ_CONCAT(&e->io_head_in, &head);
// No point in holding the lock since we're not doing a cond signal.
pthread_mutex_unlock(&e->mutex);
if (do_notify) {
// Signal to check queue.
#ifdef USE_EVENTFD
uint64_t u = 1;
// TODO (v2): check result? is it ever possible to get a short write/failure
// for an eventfd?
if (write(e->event_fd, &u, sizeof(uint64_t)) != sizeof(uint64_t)) {
assert(1 == 0);
}
#else
if (write(e->notify_send_fd, "w", 1) <= 0) {
assert(1 == 0);
}
#endif
}
}
if (!STAILQ_EMPTY(&w_head)) {
P_DEBUG("%s: running inline worker queue\n", __func__);
// emulating proxy_event_handler
proxy_run_backend_queue(&w_head);
}
return;
}
// This function handles return processing for the "old style" API: direct
// pool calls and mcp.await()
void proxy_return_rctx_cb(io_pending_t *pending) {
io_pending_proxy_t *p = (io_pending_proxy_t *)pending;
if (p->client_resp && p->client_resp->blen) {
// FIXME: workaround for buffer memory being external to objects.
// can't run 0 since that means something special (run the GC)
unsigned int kb = p->client_resp->blen / 1000;
p->thread->proxy_vm_extra_kb += kb > 0 ? kb : 1;
}
if (p->is_await) {
p->rctx->async_pending--;
mcplib_await_return(p);
// need to directly attempt to return the context,
// we may or may not be hitting proxy_run_rcontext from await_return.
if (p->rctx->async_pending == 0) {
mcp_funcgen_return_rctx(p->rctx);
}
return;
}
mcp_rcontext_t *rctx = p->rctx;
lua_rotate(rctx->Lc, 1, 1);
lua_settop(rctx->Lc, 1);
// hold the resp for a minute.
mc_resp *resp = rctx->resp;
proxy_run_rcontext(rctx);
mcp_funcgen_return_rctx(rctx);
io_queue_t *q = conn_io_queue_get(p->c, p->io_queue_type);
// Detatch the iop from the mc_resp and free it here.
conn *c = p->c;
if (p->io_type != IO_PENDING_TYPE_EXTSTORE) {
// if we're doing an extstore subrequest, the iop needs to live until
// resp's ->finish_cb is called.
resp->io_pending = NULL;
do_cache_free(p->thread->io_cache, p);
}
q->count--;
if (q->count == 0) {
// call re-add directly since we're already in the worker thread.
conn_worker_readd(c);
}
}
// This is called if resp_finish is called while an iop exists on the
// resp.
// so we need to release our iop and rctx.
// - This can't happen unless we're doing extstore fetches.
// - the request context is freed before connection processing resumes.
void proxy_finalize_rctx_cb(io_pending_t *pending) {
io_pending_proxy_t *p = (io_pending_proxy_t *)pending;
if (p->io_type == IO_PENDING_TYPE_EXTSTORE) {
if (p->hdr_it) {
// TODO: lock once, worst case this hashes/locks twice.
if (p->miss) {
item_unlink(p->hdr_it);
}
item_remove(p->hdr_it);
}
}
}
int try_read_command_proxy(conn *c) {
char *el, *cont;
if (c->rbytes == 0)
return 0;
el = memchr(c->rcurr, '\n', c->rbytes);
if (!el) {
if (c->rbytes > 1024) {
/*
* We didn't have a '\n' in the first k. This _has_ to be a
* large multiget, if not we should just nuke the connection.
*/
char *ptr = c->rcurr;
while (*ptr == ' ') { /* ignore leading whitespaces */
++ptr;
}
if (ptr - c->rcurr > 100 ||
(strncmp(ptr, "get ", 4) && strncmp(ptr, "gets ", 5))) {
conn_set_state(c, conn_closing);
return 1;
}
// ASCII multigets are unbound, so our fixed size rbuf may not
// work for this particular workload... For backcompat we'll use a
// malloc/realloc/free routine just for this.
if (!c->rbuf_malloced) {
if (!rbuf_switch_to_malloc(c)) {
conn_set_state(c, conn_closing);
return 1;
}
}
}
return 0;
}
cont = el + 1;
assert(cont <= (c->rcurr + c->rbytes));
c->last_cmd_time = current_time;
proxy_process_command(c, c->rcurr, cont - c->rcurr, PROCESS_NORMAL);
c->rbytes -= (cont - c->rcurr);
c->rcurr = cont;
assert(c->rcurr <= (c->rbuf + c->rsize));
return 1;
}
// Called when a connection is closed while in nread state reading a set
// Must only be called with an active coroutine.
void proxy_cleanup_conn(conn *c) {
assert(c->proxy_rctx);
LIBEVENT_THREAD *thr = c->thread;
mcp_rcontext_t *rctx = c->proxy_rctx;
assert(rctx->pending_reqs == 1);
rctx->pending_reqs = 0;
mcp_funcgen_return_rctx(rctx);
c->proxy_rctx = NULL;
WSTAT_DECR(thr, proxy_req_active, 1);
}
// we buffered a SET of some kind.
void complete_nread_proxy(conn *c) {
assert(c != NULL);
LIBEVENT_THREAD *thr = c->thread;
lua_State *L = thr->L;
if (c->proxy_rctx == NULL) {
complete_nread_ascii(c);
return;
}
conn_set_state(c, conn_new_cmd);
assert(c->proxy_rctx);
mcp_rcontext_t *rctx = c->proxy_rctx;
mcp_request_t *rq = rctx->request;
if (strncmp((char *)c->item + rq->pr.vlen - 2, "\r\n", 2) != 0) {
lua_settop(L, 0); // clear anything remaining on the main thread.
// FIXME (v2): need to set noreply false if mset_res, but that's kind
// of a weird hack to begin with. Evaluate how to best do that here.
out_string(c, "CLIENT_ERROR bad data chunk");
rctx->pending_reqs--;
mcp_funcgen_return_rctx(rctx);
return;
}
// We move ownership of the c->item buffer from the connection to the
// request object here. Else we can double free if the conn closes while
// inside nread.
rq->pr.vbuf = c->item;
c->item = NULL;
c->item_malloced = false;
c->proxy_rctx = NULL;
pthread_mutex_lock(&thr->proxy_limit_lock);
thr->proxy_buffer_memory_used += rq->pr.vlen;
pthread_mutex_unlock(&thr->proxy_limit_lock);
proxy_run_rcontext(rctx);
mcp_funcgen_return_rctx(rctx);
lua_settop(L, 0); // clear anything remaining on the main thread.
return;
}
// Simple error wrapper for common failures.
// lua_error() is a jump so this function never returns
// for clarity add a 'return' after calls to this.
void proxy_lua_error(lua_State *L, const char *s) {
lua_pushstring(L, s);
lua_error(L);
}
// Need a custom function so we can prefix lua strings easily.
void proxy_out_errstring(mc_resp *resp, char *type, const char *str) {
size_t len;
size_t prefix_len = strlen(type);
assert(resp != NULL);
resp_reset(resp);
// avoid noreply since we're throwing important errors.
// Fill response object with static string.
len = strlen(str);
if ((len + prefix_len + 2) > WRITE_BUFFER_SIZE) {
/* ought to be always enough. just fail for simplicity */
str = "SERVER_ERROR output line too long";
len = strlen(str);
}
char *w = resp->wbuf;
memcpy(w, type, prefix_len);
w += prefix_len;
memcpy(w, str, len);
w += len;
memcpy(w, "\r\n", 2);
resp_add_iov(resp, resp->wbuf, len + prefix_len + 2);
return;
}
// NOTE: See notes in mcp_queue_io; the secondary problem with setting the
// noreply mode from the response object is that the proxy can return strings
// manually, so we have no way to obey what the original request wanted in
// that case.
static void _set_noreply_mode(mc_resp *resp, mcp_resp_t *r) {
switch (r->mode) {
case RESP_MODE_NORMAL:
break;
case RESP_MODE_NOREPLY:
// ascii noreply only threw egregious errors to client
if (r->status == MCMC_OK) {
resp->skip = true;
}
break;
case RESP_MODE_METAQUIET:
if (r->resp.code == MCMC_CODE_END) {
resp->skip = true;
} else if (r->cmd != CMD_MG && r->resp.code == MCMC_CODE_OK) {
// FIXME (v2): mcmc's parser needs to help us out a bit more
// here.
// This is a broken case in the protocol though; quiet mode
// ignores HD for mutations but not get.
resp->skip = true;
}
break;
default:
assert(1 == 0);
}
}
static void _proxy_run_rcontext_queues(mcp_rcontext_t *rctx) {
for (int x = 0; x < rctx->fgen->max_queues; x++) {
mcp_run_rcontext_handle(rctx, x);
}
}
static void _proxy_run_tresp_to_resp(mc_resp *tresp, mc_resp *resp) {
// The internal cache handler has created a resp we want to swap in
// here. It would be fastest to swap *resp's position in the
// link but if the set is deep this would instead be slow, so
// we copy over details from this temporary resp instead.
// So far all we fill is the wbuf and some iov's? so just copy
// that + the UDP info?
memcpy(resp->wbuf, tresp->wbuf, tresp->iov[0].iov_len);
resp->tosend = 0;
for (int x = 0; x < tresp->iovcnt; x++) {
resp->iov[x] = tresp->iov[x];
resp->tosend += tresp->iov[x].iov_len;
}
// resp->iov[x].iov_base needs to be updated if it's
// pointing within its wbuf.
// FIXME: This is too fragile. we need to be able to
// inherit details and swap resp objects around.
if (tresp->iov[0].iov_base == tresp->wbuf) {
resp->iov[0].iov_base = resp->wbuf;
}
resp->iovcnt = tresp->iovcnt;
resp->chunked_total = tresp->chunked_total;
resp->chunked_data_iov = tresp->chunked_data_iov;
// copy UDP headers...
resp->request_id = tresp->request_id;
resp->udp_sequence = tresp->udp_sequence;
resp->udp_total = tresp->udp_total;
resp->request_addr = tresp->request_addr;
resp->request_addr_size = tresp->request_addr_size;
resp->item = tresp->item; // will be populated if not extstore fetch
tresp->item = NULL; // move ownership of the item to resp from tresp
resp->skip = tresp->skip;
}
// HACK NOTES:
// These are self-notes for dormando mostly.
// The IO queue system does not work well with the proxy, as we need to:
// - only increment q->count during the submit phase
// - .. because a resumed coroutine can queue more data.
// - and we will never hit q->count == 0
// - .. and then never resume the main connection. (conn_worker_readd)
// - which will never submit the new sub-requests
// - need to only increment q->count once per stack of requests coming from a
// resp.
//
// There are workarounds for this all over. In the await code, we test for
// "the first await object" or "is an await background object", for
// incrementing the q->count
// For pool-backed requests we always increment in submit
// For RQU backed requests (new API) there isn't an easy place to test for
// "the first request", because:
// - The connection queue is a stack of _all_ requests pending on this
// connection, and many requests can arrive in one batch.
// - Thus we cannot simply check if there are items in the queue
// - RQU's can be recursive, so we have to loop back to the parent to check to
// see if we're the first queue or not.
//
// This hack workaround exists so I can fix the IO queue subsystem as a change
// independent of the RCTX change, as the IO queue touches everything and
// scares the shit out of me. It's much easier to make changes to it in
// isolation, when all existing systems are currently working and testable.
//
// Description of the hack:
// - in mcp_queue_io: roll up rctx to parent, and if we are the first IO to queue
// since the rcontext started, set p->qcounr_incr = true
// Later in submit_cb:
// - q->count++ if p->qcount_incr.
//
// Finally, in proxy_return_rqu_cb:
// - If parent completed non-yielded work, q->count-- to allow conn
// resumption.
// - At bottom of rqu_cb(), flush any IO queues for the connection in case we
// re-queued work.
int proxy_run_rcontext(mcp_rcontext_t *rctx) {
int nresults = 0;
lua_State *Lc = rctx->Lc;
assert(rctx->lua_narg != 0);
int cores = lua_resume(Lc, NULL, rctx->lua_narg, &nresults);
rctx->lua_narg = 1; // reset to default since not-default is uncommon.
size_t rlen = 0;
conn *c = rctx->c;
mc_resp *resp = rctx->resp;
if (cores == LUA_OK) {
// don't touch the result object if we were a sub-context.
if (!rctx->parent) {
WSTAT_DECR(c->thread, proxy_req_active, 1);
int type = lua_type(Lc, 1);
mcp_resp_t *r = NULL;
P_DEBUG("%s: coroutine completed. return type: %d\n", __func__, type);
if (type == LUA_TUSERDATA && (r = luaL_testudata(Lc, 1, "mcp.response")) != NULL) {
_set_noreply_mode(resp, r);
if (r->status != MCMC_OK && r->resp.type != MCMC_RESP_ERRMSG) {
proxy_out_errstring(resp, PROXY_SERVER_ERROR, "backend failure");
} else if (r->cresp) {
mc_resp *tresp = r->cresp;
assert(c != NULL);
_proxy_run_tresp_to_resp(tresp, resp);
// we let the mcp_resp gc handler free up tresp and any
// associated io_pending's of its own later.
} else if (r->buf) {
// response set from C.
resp->write_and_free = r->buf;
resp_add_iov(resp, r->buf, r->blen);
// stash the length to later remove from memory tracking
resp->wbytes = r->blen + r->extra;
resp->proxy_res = true;
r->buf = NULL;
} else {
// Empty response: used for ascii multiget emulation.
}
} else if (type == LUA_TSTRING) {
// response is a raw string from lua.
const char *s = lua_tolstring(Lc, 1, &rlen);
size_t l = rlen > WRITE_BUFFER_SIZE ? WRITE_BUFFER_SIZE : rlen;
memcpy(resp->wbuf, s, l);
resp_add_iov(resp, resp->wbuf, l);
lua_pop(Lc, 1);
} else {
proxy_out_errstring(resp, PROXY_SERVER_ERROR, "bad response");
}
}
rctx->pending_reqs--;
} else if (cores == LUA_YIELD) {
int yield_type = lua_tointeger(Lc, -1);
P_DEBUG("%s: coroutine yielded. return type: %d\n", __func__, yield_type);
assert(yield_type != 0);
lua_pop(Lc, 1);
int res = 0;
mcp_request_t *rq = NULL;
mcp_backend_t *be = NULL;
mcp_resp_t *r = NULL;
switch (yield_type) {
case MCP_YIELD_AWAIT:
// called with await context on the stack.
rctx->first_queue = false; // HACK: ensure awaits are counted.
mcplib_await_run_rctx(rctx);
break;
case MCP_YIELD_POOL:
// TODO (v2): c only used for cache alloc?
// pool_call checks the argument already.
be = lua_touserdata(Lc, -1);
rq = lua_touserdata(Lc, -2);
// not using a pre-made res object from this yield type.
r = mcp_prep_resobj(Lc, rq, be, c->thread);
rctx->first_queue = false; // HACK: ensure poolreqs are counted.
mcp_queue_rctx_io(rctx, rq, be, r);
break;
case MCP_YIELD_INTERNAL:
// stack should be: rq, res
if (rctx->parent) {
LOGGER_LOG(NULL, LOG_PROXYEVENTS, LOGGER_PROXY_ERROR, NULL, "cannot run mcp.internal from a sub request");
rctx->pending_reqs--;
return LUA_ERRRUN;
} else {
res = mcplib_internal_run(rctx);
if (res == 0) {
// stack should still be: rq, res
// TODO: turn this function into a for loop that re-runs on
// certain status codes, to avoid recursive depth here.