-
Notifications
You must be signed in to change notification settings - Fork 2
/
compress_nlvr_dtp.py
272 lines (236 loc) · 11.6 KB
/
compress_nlvr_dtp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
'''
* Copyright (c) 2023, Dachuan Shi.
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* For full license text, see LICENSE.txt file in the repo root
* By Dachuan Shi
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.blip_nlvr import blip_nlvr
import utils
from utils import cosine_lr_schedule, print_params_and_flops
from data import create_dataset, create_sampler, create_loader
from fvcore.nn import FlopCountAnalysis
from torch.cuda.amp import autocast as autocast
def train(model, data_loader, optimizer, epoch, device, scaler=None, temperature=0):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.7f}'))
metric_logger.add_meter('temperature', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_fdt', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ori', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
for _,(image0, image1, text, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
images = torch.cat([image0, image1], dim=0)
images, targets = images.to(device), targets.to(device)
if scaler is not None:
with autocast():
loss_ori, loss_fdt = model(images, text, targets=targets, temperature=temperature, train=True)
loss = loss_ori + 0.1 * loss_fdt
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss_ori, loss_fdt = model(images, text, targets=targets, temperature=temperature, train=True)
loss = loss_ori + 0.1 * loss_fdt
optimizer.zero_grad()
loss.backward()
optimizer.step()
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(loss=loss.item())
metric_logger.update(loss_ori=loss_ori.item())
metric_logger.update(loss_fdt=loss_fdt.item())
metric_logger.update(temperature=temperature)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model, data_loader, device, temperature=0):
# test
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Evaluation:'
print_freq = 50
GFLOPS = 0
len_data_loader = len(data_loader)
for image0, image1, text, targets in metric_logger.log_every(data_loader, print_freq, header):
images = torch.cat([image0, image1], dim=0)
images, targets = images.to(device), targets.to(device)
prediction = model(images, text, targets=targets, temperature=temperature, train=False)
_, pred_class = prediction.max(1)
accuracy = (targets==pred_class).sum() / targets.size(0)
metric_logger.meters['acc'].update(accuracy.item(), n=image0.size(0))
flops = FlopCountAnalysis(model.to(device), inputs=(images, text, targets, temperature, False,))
flops.unsupported_ops_warnings(False)
flops.uncalled_modules_warnings(False)
flops.tracer_warnings("none")
B = targets.shape[0]
GFLOPS += flops.total() / B / 1e9
GFLOPS = GFLOPS / len_data_loader
print("Current Temperature:", temperature)
print("Averaged GFLOPS:", GFLOPS)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}, GFLOPS
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
config['pretrained'] = args.pretrained
config['max_epoch'] = args.epoch
config['p'] = args.p
#### Dataset ####
print("Creating nvlr dataset")
datasets = create_dataset('nlvr', config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True,False,False], num_tasks, global_rank)
else:
samplers = [None, None, None]
batch_size=[config['batch_size_train'],config['batch_size_test'],config['batch_size_test']]
train_loader, val_loader, test_loader = create_loader(datasets,samplers,batch_size=batch_size, num_workers=[4,4,4],is_trains=[True, False,False], collate_fns=[None,None,None])
#### Model ####
temperature = 1.0
if not args.evaluate:
print("Creating model for token pruning")
model = blip_nlvr(pretrained=config['pretrained'], image_size=config['image_size'],
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'], config=config)
model = model.to(device)
print_params_and_flops('nlvr', model, device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
else:
print("Creating model for evaluation")
model = blip_nlvr(pretrained='', image_size=config['image_size'],
vit=config['vit'], vit_grad_ckpt=config['vit_grad_ckpt'], vit_ckpt_layer=config['vit_ckpt_layer'], evaluate=True, config=config)
checkpoint = torch.load(config['pretrained'])
model.load_state_dict(checkpoint['model'], strict=False)
temperature = checkpoint["temperature"]
model = model.to(device)
model_without_ddp = model
# calculate temperature
Ori_Gflops = 132.54
Target_Gflops = Ori_Gflops * (1 - config['p'])
if not args.evaluate:
print("Original model Gflops:", Ori_Gflops)
print("Target model Gflops:", Target_Gflops)
print('Target compression ratio: {}%'.format(config['p']*100))
best = 0
best_epoch = 0
Cur_Gflops = Ori_Gflops
scaler = torch.cuda.amp.GradScaler() if (not args.evaluate and args.amp) else None
for epoch in range(0, config['max_epoch']):
if epoch > 0:
## temperature change
if Cur_Gflops > Target_Gflops:
if Cur_Gflops - Target_Gflops > 30:
temperature += 1
elif Cur_Gflops - Target_Gflops > 10:
temperature += 0.5
elif Cur_Gflops - Target_Gflops > 5:
temperature += 0.25
# elif Cur_Gflops - Target_Gflops > 2:
# temperature += 0.1
elif Cur_Gflops - Target_Gflops > 1:
temperature += 0.1
else:
temperature += 0.01
else:
if Target_Gflops - Cur_Gflops > 30:
temperature -= 1
elif Target_Gflops - Cur_Gflops > 10:
temperature -= 0.5
elif Target_Gflops - Cur_Gflops > 5:
temperature -= 0.25
# elif Target_Gflops - Cur_Gflops > 2:
# temperature -= 0.1
elif Target_Gflops - Cur_Gflops > 1:
temperature -= 0.1
else:
temperature -= 0.01
print("Temperature:", temperature)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
train_stats = train(model, train_loader, optimizer, epoch, device, scaler=scaler, temperature=temperature)
val_stats, Cur_Gflops = evaluate(model_without_ddp, val_loader, device, temperature=temperature)
test_stats, _ = evaluate(model_without_ddp, test_loader, device, temperature=temperature)
if utils.is_main_process():
if args.evaluate:
log_stats = {**{f'val_{k}': v for k, v in val_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'Cur_Gflops': round(Cur_Gflops, 2),
}
with open(os.path.join(args.output_dir, "evaluate.txt"),"w") as f:
f.write(json.dumps(log_stats) + "\n")
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in val_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'Cur_Gflops': round(Cur_Gflops, 2),
}
if float(test_stats['acc']) > best and Cur_Gflops - Target_Gflops < 5.0:
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'config': config,
'epoch': epoch,
"temperature": temperature,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = float(test_stats['acc'])
best_epoch = epoch
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
print("LOG: ", log_stats)
if args.evaluate:
break
dist.barrier()
torch.cuda.empty_cache()
if utils.is_main_process():
print("LOG: best epoch: %d"%best_epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/nlvr.yaml')
parser.add_argument('--output_dir', default='output/NLVR')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--pretrained', default='pretrained/model_base_nlvr.pth', type=str)
parser.add_argument('--epoch', default=15, type=int, help='number of epochs')
parser.add_argument('--p', default=0.5, type=float, help='total compression ratio')
parser.add_argument('--amp', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)