-
Notifications
You must be signed in to change notification settings - Fork 2
/
compress_retrieval_clip_dtp.py
408 lines (362 loc) · 16.9 KB
/
compress_retrieval_clip_dtp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
'''
* Copyright (c) 2023, Dachuan Shi.
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* For full license text, see LICENSE.txt file in the repo root
* By Dachuan Shi
'''
import argparse
import os
import ruamel_yaml as yaml
import numpy as np
import random
from pathlib import Path
import json
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from clip import clip
import utils
from utils import cosine_lr_schedule, print_params_and_flops
from data import create_dataset, create_sampler, create_loader
from fvcore.nn import FlopCountAnalysis
from torch.cuda.amp import autocast as autocast
def train(model, data_loader, optimizer, epoch, device, config, scaler=None, temperature=0):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.7f}'))
metric_logger.add_meter('temperature', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_fdt', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_fdt_m', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
for i,(image, caption, idx) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
image = image.to(device,non_blocking=True)
idx = idx.to(device,non_blocking=True)
if epoch>0:
alpha = config['alpha']
else:
alpha = config['alpha']*min(1,i/len(data_loader))
if scaler is not None:
with autocast():
loss_ita, loss_fdt, loss_fdt_m = model(image, caption, alpha=alpha, idx=idx, temperature=temperature)
loss = loss_ita + 0.1 * loss_fdt + 0.1 * loss_fdt_m
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss_ita, loss_fdt, loss_fdt_m = model(image, caption, alpha=alpha, idx=idx, temperature=temperature)
loss = loss_ita + 0.1 * loss_fdt + 0.1 * loss_fdt_m
optimizer.zero_grad()
loss.backward()
optimizer.step()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_fdt=loss_fdt.item())
metric_logger.update(loss_fdt_m=loss_fdt_m.item())
metric_logger.update(temperature=temperature)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.4f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(model, data_loader, device, config, temperature=0):
# test
model.eval()
GFLOPS = 0
len_data_loader = len(data_loader)
print('Computing text features for evaluation...')
texts = data_loader.dataset.text
num_text = len(texts)
text_bs = 256
text_embeds = []
for i in range(0, num_text, text_bs):
text = texts[i: min(num_text, i+text_bs)]
text_input = model.tokenize(text).to(device)
text_output, _ = model.encode_text(text_input, model.space_dict, temperature)
text_embed = text_output / text_output.norm(dim=1, keepdim=True)
text_embeds.append(text_embed)
text_embeds = torch.cat(text_embeds,dim=0)
print('Computing image features for evaluation...')
image_embeds = []
for image, caption, img_id in tqdm(data_loader):
image = image.to(device)
image_feat, _ = model.encode_image(image, model.space_dict, temperature)
image_embed = image_feat / image_feat.norm(dim=1, keepdim=True)
image_embeds.append(image_embed)
## calculate Gflops
idx = img_id.to(device,non_blocking=True)
alpha = config['alpha']
flops = FlopCountAnalysis(model.to(device), inputs=(image, caption, alpha, idx, temperature,))
flops.unsupported_ops_warnings(False)
flops.uncalled_modules_warnings(False)
flops.tracer_warnings("none")
B = image.shape[0]
try:
GFLOPS += flops.total() / B / 1e9
except:
continue
GFLOPS = GFLOPS / len_data_loader
print("Current Temperature:", temperature)
print("Averaged GFLOPS:", GFLOPS)
image_embeds = torch.cat(image_embeds,dim=0)
sims_matrix = image_embeds @ text_embeds.t()
return sims_matrix.cpu().numpy(), sims_matrix.t().cpu().numpy(), GFLOPS
@torch.no_grad()
def itm_eval(scores_i2t, scores_t2i, txt2img, img2txt):
#Images->Text
ranks = np.zeros(scores_i2t.shape[0])
for index,score in enumerate(scores_i2t):
inds = np.argsort(score)[::-1]
# Score
rank = 1e20
for i in img2txt[index]:
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
# Compute metrics
tr1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
tr5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
tr10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
#Text->Images
ranks = np.zeros(scores_t2i.shape[0])
for index,score in enumerate(scores_t2i):
inds = np.argsort(score)[::-1]
ranks[index] = np.where(inds == txt2img[index])[0][0]
# Compute metrics
ir1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
ir5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
ir10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
tr_mean = (tr1 + tr5 + tr10) / 3
ir_mean = (ir1 + ir5 + ir10) / 3
r_mean = (tr_mean + ir_mean) / 2
eval_result = {'txt_r1': tr1,
'txt_r5': tr5,
'txt_r10': tr10,
'txt_r_mean': tr_mean,
'img_r1': ir1,
'img_r5': ir5,
'img_r10': ir10,
'img_r_mean': ir_mean,
'r_mean': r_mean}
return eval_result
@torch.no_grad()
def calculate_temperature(model, data_loader, device, config, Cur_Gflops, Target_Gflops):
model.eval()
temperature = 1
while Target_Gflops - Cur_Gflops > 5 or Cur_Gflops - Target_Gflops > 5:
## temperature change
if Cur_Gflops > Target_Gflops:
if Cur_Gflops - Target_Gflops > 100:
temperature += 0.5
elif Cur_Gflops - Target_Gflops > 50:
temperature += 0.25
elif Cur_Gflops - Target_Gflops > 30:
temperature += 0.15
elif Cur_Gflops - Target_Gflops > 20:
temperature += 0.1
elif Cur_Gflops - Target_Gflops > 10:
temperature += 0.05
else:
temperature += 0.02
else:
if Target_Gflops - Cur_Gflops > 100:
temperature -= 0.5
elif Target_Gflops - Cur_Gflops > 50:
temperature -= 0.25
elif Target_Gflops - Cur_Gflops > 30:
temperature -= 0.15
elif Target_Gflops - Cur_Gflops > 20:
temperature -= 0.1
elif Target_Gflops - Cur_Gflops > 10:
temperature -= 0.05
else:
temperature -= 0.02
print("Current Temperature:", temperature)
GFLOPS = 0
count_num = 30
for idx, (image, caption, img_id) in enumerate(data_loader):
if idx > count_num:
break
## calculate Gflops
img_id = img_id.to(device,non_blocking=True)
image = image.to(device,non_blocking=True)
alpha = config['alpha']
flops = FlopCountAnalysis(model.to(device), inputs=(image, caption, alpha, img_id, temperature,))
flops.unsupported_ops_warnings(False)
flops.uncalled_modules_warnings(False)
flops.tracer_warnings("none")
B = image.shape[0]
try:
GFLOPS += flops.total() / B / 1e9
except:
continue
Cur_Gflops = GFLOPS / count_num
print("Cur_Gflops:", Cur_Gflops)
return Cur_Gflops, temperature
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
config['pretrained'] = args.pretrained
config['max_epoch'] = args.epoch
config['p'] = args.p
#### Dataset ####
print("Creating retrieval dataset")
train_dataset, val_dataset, test_dataset = create_dataset('retrieval_%s'%config['dataset'], config)
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler([train_dataset], [True], num_tasks, global_rank) + [None, None]
else:
samplers = [None, None, None]
train_loader, val_loader, test_loader = create_loader([train_dataset, val_dataset, test_dataset],samplers,batch_size=[config['batch_size_train']]+[config['batch_size_test']]*2, num_workers=[4,4,4], is_trains=[True, False, False], collate_fns=[None,None,None])
#### Model ####
temperature = 1.0
if not args.evaluate:
print("Creating model for token pruning")
model, _ = clip.load(name=config['pretrained'], device=device, evaluate=True, config=config)
model.tokenize = clip.tokenize
model = model.to(device)
print_params_and_flops('retrieval_clip', model, device, config)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
else:
print("Creating model for evaluation")
model, _ = clip.load(name=config['pretrained'], device=device, evaluate=True, config=config)
model.tokenize = clip.tokenize
checkpoint = torch.load(config['pretrained'])
temperature = checkpoint["temperature"]
model = model.to(device)
model_without_ddp = model
# calculate temperature
Ori_Gflops = 395.7
Target_Gflops = Ori_Gflops * (1 - config['p'])
if not args.evaluate:
print("Original model Gflops:", Ori_Gflops)
print("Target model Gflops:", Target_Gflops)
print('Target compression ratio: {}%'.format(config['p']*100))
# compression ratio -> init temperature
sample_loader = create_loader([test_dataset],[None],
batch_size=[config['batch_size_test']],num_workers=[8],
is_trains=[False],
collate_fns=[None])[0]
_, temperature = calculate_temperature(model_without_ddp, sample_loader, device, config, Ori_Gflops, Target_Gflops)
best = 0
best_epoch = 0
Cur_Gflops = Ori_Gflops
scaler = torch.cuda.amp.GradScaler() if (not args.evaluate and args.amp) else None
for epoch in range(0, config['max_epoch']):
if epoch > 0:
## temperature change
if Cur_Gflops > Target_Gflops:
if Cur_Gflops - Target_Gflops > 50:
temperature += 0.5
elif Cur_Gflops - Target_Gflops > 30:
temperature += 0.3
elif Cur_Gflops - Target_Gflops > 20:
temperature += 0.2
elif Cur_Gflops - Target_Gflops > 10:
temperature += 0.1
elif Cur_Gflops - Target_Gflops > 5:
temperature += 0.05
elif Cur_Gflops - Target_Gflops > 2:
temperature += 0.02
else:
temperature += 0.01
else:
if Target_Gflops - Cur_Gflops > 50:
temperature -= 0.5
elif Target_Gflops - Cur_Gflops > 30:
temperature -= 0.3
elif Target_Gflops - Cur_Gflops > 20:
temperature -= 0.2
elif Target_Gflops - Cur_Gflops > 10:
temperature -= 0.1
elif Target_Gflops - Cur_Gflops > 5:
temperature -= 0.05
elif Target_Gflops - Cur_Gflops > 2:
temperature -= 0.02
else:
temperature -= 0.01
print("Temperature:", temperature)
if not args.evaluate:
if args.distributed:
train_loader.sampler.set_epoch(epoch)
cosine_lr_schedule(optimizer, epoch, config['max_epoch'], config['init_lr'], config['min_lr'])
train_stats = train(model, train_loader, optimizer, epoch, device, config, scaler=scaler, temperature=temperature)
#score_val_i2t, score_val_t2i, _ = evaluate(model_without_ddp, val_loader, device, config, temperature=temperature)
score_test_i2t, score_test_t2i, Cur_Gflops = evaluate(model_without_ddp, test_loader, device, config, temperature=temperature)
if utils.is_main_process():
#val_result = itm_eval(score_val_i2t, score_val_t2i, val_loader.dataset.txt2img, val_loader.dataset.img2txt)
#print(val_result)
test_result = itm_eval(score_test_i2t, score_test_t2i, test_loader.dataset.txt2img, test_loader.dataset.img2txt)
print(test_result)
if not args.evaluate and test_result['r_mean'] > best and Cur_Gflops - Target_Gflops < 5.0:
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'config': config,
'epoch': epoch,
"temperature": temperature,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_best.pth'))
best = test_result['r_mean']
best_epoch = epoch
if args.evaluate:
log_stats = {#**{f'val_{k}': v for k, v in val_result.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'Cur_Gflops': round(Cur_Gflops, 2),
}
with open(os.path.join(args.output_dir, "evaluate.txt"),"w") as f:
f.write(json.dumps(log_stats) + "\n")
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
#**{f'val_{k}': v for k, v in val_result.items()},
**{f'test_{k}': v for k, v in test_result.items()},
'epoch': epoch,
'Cur_Gflops': round(Cur_Gflops, 2),
}
with open(os.path.join(args.output_dir, "log.txt"),"a") as f:
f.write(json.dumps(log_stats) + "\n")
print("LOG: ", log_stats)
if args.evaluate:
break
dist.barrier()
torch.cuda.empty_cache()
if utils.is_main_process():
print("LOG: best epoch: %d"%best_epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/retrieval_flickr.yaml')
parser.add_argument('--output_dir', default='output/Retrieval_flickr')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
parser.add_argument('--pretrained', default='pretrained/clip_large_retrieval_flickr.pth', type=str)
parser.add_argument('--epoch', default=5, type=int, help='number of epochs')
parser.add_argument('--p', default=0.5, type=float, help='total compression ratio')
parser.add_argument('--amp', action='store_true')
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)