forked from liangsongLee/icp_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
icp_main.cpp
220 lines (191 loc) · 8.18 KB
/
icp_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//
// Created by las on 2020/6/13.
//
#include <iostream>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/common/transforms.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <vector>
#include <chrono>
#include "icp_g2o.h"
#define USING_SVD
//#define USING_G2O
#ifdef USING_SVD
void icp_SVD(const pcl::PointCloud<pcl::PointXYZ>::Ptr &target,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &source,
Eigen::Matrix4d &T);
#endif
#ifdef USING_G2O
void icp_G2O(const pcl::PointCloud<pcl::PointXYZ>::Ptr &target,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &source,
Eigen::Matrix4d &T);
inline g2o::SE3Quat toSE3Quat(const Eigen::Matrix4d &T)
{
Eigen::Matrix3d R = T.block<3,3>(0,0);
Eigen::Vector3d t = T.block<3,1>(0,3);
return g2o::SE3Quat(R,t);
}
#endif
int main(int argc, char **argv) {
// read cloud
pcl::PointCloud<pcl::PointXYZ>::Ptr first(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr second(
new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("./PCDdata/first.pcd", *first);
pcl::io::loadPCDFile<pcl::PointXYZ>("./PCDdata/second.pcd", *second);
pcl::PointCloud<pcl::PointXYZ>::Ptr tranformed_second(
new pcl::PointCloud<pcl::PointXYZ>);
Eigen::Matrix4d T = Eigen::Matrix4d::Identity();
#ifdef USING_SVD
std::cout << "calling SVD..." << std::endl;
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
icp_SVD(first, second, T);
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
std::chrono::duration<double> time_used = std::chrono::duration_cast<std::chrono::duration<double>>(t2-t1);
std::cout << "SVD done..." << std::endl;
std::cout << "SVD costs time: " << time_used.count() << endl;
std::cout << "T SVD: " << T << std::endl;
#endif
#ifdef USING_G2O
std::cout << "calling G2O..." << std::endl;
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
icp_G2O(first, second, T);
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
std::chrono::duration<double> time_used = std::chrono::duration_cast<std::chrono::duration<double>>(t2-t1);
std::cout << "G2O done..." << std::endl;
std::cout << "G2O costs time: " << time_used.count() << endl;
std::cout << "T G2O: " << T << std::endl;
#endif
pcl::transformPointCloud(*second, *tranformed_second, T);
// show result
pcl::visualization::PCLVisualizer::Ptr viewer(
new pcl::visualization::PCLVisualizer("viewer"));
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color1(
first, 0, 255, 0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> color2(
tranformed_second, 255, 0, 0);
viewer->addPointCloud<pcl::PointXYZ>(first, color1, "first");
viewer->addPointCloud<pcl::PointXYZ>(tranformed_second, color2,
"tranformed_second");
viewer->setPointCloudRenderingProperties(
pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "first");
viewer->setPointCloudRenderingProperties(
pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "tranformed_second");
viewer->spin();
return 0;
}
#ifdef USING_SVD
void icp_SVD(const pcl::PointCloud<pcl::PointXYZ>::Ptr &target,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &source,
Eigen::Matrix4d &T) {
pcl::PointCloud<pcl::PointXYZ>::Ptr optimized_cloud(
new pcl::PointCloud<pcl::PointXYZ>);
pcl::copyPointCloud(*source, *optimized_cloud);
pcl::KdTreeFLANN<pcl::PointXYZ> tree;
tree.setInputCloud(target);
T.setIdentity();
Eigen::Matrix4d init_T = Eigen::Matrix4d::Identity();
for (int iter = 0; iter < 100; iter++) {
std::cout << "iter number: " << iter << std::endl;
pcl::transformPointCloud(*source, *optimized_cloud, init_T);
Eigen::MatrixXd P(3, source->points.size());
Eigen::MatrixXd Q(3, source->points.size());
for (size_t i = 0; i < optimized_cloud->points.size(); ++i) {
std::vector<int> idx;
std::vector<float> dist;
tree.nearestKSearch(optimized_cloud->points[i], 1, idx, dist);
P(0, i) = source->points[i].x;
P(1, i) = source->points[i].y;
P(2, i) = source->points[i].z;
Q(0, i) = target->points[idx[0]].x;
Q(1, i) = target->points[idx[0]].y;
Q(2, i) = target->points[idx[0]].z;
}
Eigen::Vector3d p_mean = P.rowwise().mean();
Eigen::Vector3d q_mean = Q.rowwise().mean();
Eigen::MatrixXd one_matrix(1, source->points.size());
one_matrix.setOnes();
auto p_means = p_mean * one_matrix;
auto q_means = q_mean * one_matrix;
P = P - p_means;
Q = Q - q_means;
Eigen::Matrix3d W = Q * P.transpose();
Eigen::JacobiSVD<Eigen::Matrix3d> svd(W, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
Eigen::Matrix3d R = U * (V.transpose());
if (R.determinant() < 0) {
R = -R;
}
Eigen::Vector3d t = q_mean - R * p_mean;
T.block<3, 3>(0, 0) = R;
T.block<3, 1>(0, 3) = t;
Eigen::Matrix4d delta_T = init_T.inverse() * T;
if (delta_T.isIdentity(1e-4)) {
break;
}
init_T = T;
}
}
#endif
#ifdef USING_G2O
void icp_G2O(const pcl::PointCloud<pcl::PointXYZ>::Ptr &target,
const pcl::PointCloud<pcl::PointXYZ>::Ptr &source,
Eigen::Matrix4d &T){
pcl::PointCloud<pcl::PointXYZ>::Ptr optimized_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::copyPointCloud(*source, *optimized_cloud);
pcl::KdTreeFLANN<pcl::PointXYZ> tree;
tree.setInputCloud(target);
T.setIdentity();
Eigen::Matrix4d init_T = Eigen::Matrix4d::Identity();
for (int iter = 0; iter < 100; iter++) {
std::cout << "iter number: " << iter << std::endl;
g2o::SparseOptimizer optimizer;
g2o::BlockSolverX::LinearSolverType *linearSolver;
linearSolver = new g2o::LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
g2o::BlockSolverX *solver_ptr = new g2o::BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg *solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
// optimizer.setVerbose(true);
pcl::transformPointCloud(*source, *optimized_cloud, init_T);
g2o::SE3Quat T_ = toSE3Quat(init_T);
g2o::VertexSE3Expmap *pose = new g2o::VertexSE3Expmap();
pose->setId(0);
pose->setEstimate(T_);
optimizer.addVertex(pose);
for (size_t i = 0; i < optimized_cloud->points.size(); ++i) {
std::vector<int> idx;
std::vector<float> dist;
tree.nearestKSearch(optimized_cloud->points[i], 1, idx, dist);
if (dist[0] > 5.)
continue;
Eigen::Vector3d source_point(source->points[i].x, source->points[i].y,
source->points[i].z);
Eigen::Vector3d target_point(target->points[idx[0]].x,
target->points[idx[0]].y,
target->points[idx[0]].z);
g2o::EdgeProjectXYZPoseOnlyICP *edge = new g2o::EdgeProjectXYZPoseOnlyICP();
edge->point_ = source_point;
edge->setVertex(0, pose);
edge->setMeasurement(target_point);
edge->setInformation(Eigen::Matrix3d::Identity());
optimizer.addEdge(edge);
}
optimizer.initializeOptimization();
optimizer.optimize(10);
Eigen::Matrix3d R = pose->estimate().rotation().toRotationMatrix();
Eigen::Vector3d t = pose->estimate().translation();
T.block<3,3>(0,0) = R;
T.block<3,1>(0,3) = t;
Eigen::Matrix4d delta_T = init_T.inverse() * T;
if (delta_T.isIdentity(1e-4)) {
break;
}
init_T = T;
}
}
#endif