forked from jpeyre/analogy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
409 lines (293 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from __future__ import division
import __init__
import tensorboard_logger
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import time
from utils import AverageMeter, Tb_logger, Parser
import argparse
import os.path as osp
import os
from datasets.BaseLoader import TrainSampler
from networks import models
import yaml
import warnings
warnings.filterwarnings("ignore")
"""
Parsing options
"""
args = argparse.ArgumentParser()
parser = Parser(args)
opt = parser.make_options()
print(opt)
"""
Train / val
"""
def train(epoch, split):
batch_time = 0
train_loss = {}
train_recall = {}
train_precision = {}
loader = loaders[split]
model.train()
start_time = time.time()
start = time.time()
for batch_idx, batch_input in enumerate(loader):
for key in batch_input.keys():
if opt.use_gpu:
batch_input[key] = Variable(batch_input[key].cuda())
else:
batch_input[key] = Variable(batch_input[key])
# Train
loss, tp_class, fp_class, num_pos_class = model.train_(batch_input)
batch_time += time.time() - start
start = time.time()
# True pos/false pos per branch
for gram in tp_class.keys():
recall = np.nanmean(tp_class[gram].numpy()/num_pos_class[gram].numpy())
precision = np.nanmean(tp_class[gram].numpy() / (tp_class[gram].numpy() + fp_class[gram].numpy()))
if gram not in train_recall.keys():
train_recall[gram] = AverageMeter()
if gram not in train_precision.keys():
train_precision[gram] = AverageMeter()
if gram not in train_loss.keys():
train_loss[gram] = AverageMeter()
train_recall[gram].update(recall, n=batch_input['pair_objects'].size(0))
train_precision[gram].update(precision, n=batch_input['pair_objects'].size(0))
train_loss[gram].update(loss[gram].data[0], n=batch_input['pair_objects'].size(0))
# Loss reg
if opt.use_analogy:
if 'reg' not in train_loss.keys():
train_loss['reg'] = AverageMeter()
train_loss['reg'].update(loss['reg'].data[0], n=batch_input['pair_objects'].size(0))
learning_rate = model.optimizer.param_groups[0]['lr']
if batch_idx % 100 ==0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tDone in: {:.2f} sec'.format(epoch, batch_idx, len(loader), 100. * batch_idx / len(loader), sum(loss.values()).data[0], (time.time()-start_time)))
start_time = time.time()
# Record logs in tensorboard
if model.ite % 500 ==0:
batch_time /= 500
total_train_loss = 0
if opt.use_analogy:
total_train_loss = train_loss['sro'].avg + opt.lambda_reg*train_loss['reg'].avg
else:
for _, val in train_loss.iteritems():
total_train_loss += val.avg
# Register in logger
tb_logger[split].log_value('epoch', epoch, model.ite)
tb_logger[split].log_value('loss', total_train_loss, model.ite)
tb_logger[split].log_value('batch_time', batch_time, model.ite)
tb_logger[split].log_value('learning_rate', learning_rate, model.ite)
tb_logger[split].log_value('weight_decay', opt.weight_decay, model.ite)
for gram in tp_class.keys():
tb_logger[split].log_value(gram+'_loss', train_loss[gram].avg, model.ite)
tb_logger[split].log_value(gram+'_mean_recall', 100.*train_recall[gram].avg, model.ite)
tb_logger[split].log_value(gram+'_mean_precision', 100.*train_precision[gram].avg, model.ite)
# Analogy loss
if opt.use_analogy:
tb_logger[split].log_value('loss_reg', train_loss['reg'].avg, model.ite)
batch_time = 0
model.ite += 1
for gram in tp_class.keys():
train_loss[gram].reset()
if opt.use_analogy:
train_loss['reg'].reset()
def evaluate(epoch, split):
model.eval()
batch_time = 0
test_loss = {}
test_recall = {}
test_precision = {}
loader = loaders[split]
start = time.time()
for batch_idx, batch_input in enumerate(loader):
for key in batch_input.keys():
if opt.use_gpu:
batch_input[key] = Variable(batch_input[key].cuda())
else:
batch_input[key] = Variable(batch_input[key])
# Eval
loss, tp_class, fp_class, num_pos_class = model.val_(batch_input)
batch_time += time.time() - start
start = time.time()
# Performance per gram
for gram in tp_class.keys():
recall = np.nanmean(tp_class[gram].numpy()/num_pos_class[gram].numpy())
precision = np.nanmean(tp_class[gram].numpy() / (tp_class[gram].numpy() + fp_class[gram].numpy()))
if gram not in test_recall.keys():
test_recall[gram] = AverageMeter()
if gram not in test_precision.keys():
test_precision[gram] = AverageMeter()
if gram not in test_loss.keys():
test_loss[gram] = AverageMeter()
test_recall[gram].update(recall, n=batch_input['pair_objects'].size(0))
test_precision[gram].update(precision, n=batch_input['pair_objects'].size(0))
test_loss[gram].update(loss[gram].data[0], n=batch_input['pair_objects'].size(0))
# Loss analogy
if opt.use_analogy:
if 'reg' not in test_loss.keys():
test_loss['reg'] = AverageMeter()
test_loss['reg'].update(loss['reg'].data[0], n=batch_input['pair_objects'].size(0))
# Save total loss on test
total_test_loss = 0
if opt.use_analogy:
total_test_loss = test_loss['sro'].avg + opt.lambda_reg*test_loss['reg'].avg
else:
for _, val in test_loss.iteritems():
total_test_loss += val.avg
tb_logger[split].log_value('epoch', epoch, model.ite)
tb_logger[split].log_value('loss', total_test_loss, model.ite)
tb_logger[split].log_value('batch_time', batch_time/len(loader), model.ite)
# Total performance per gram
recall_gram = {}
loss_gram = {}
precision_gram = {}
recall_gram = {}
for gram in tp_class.keys():
tb_logger[split].log_value(gram+'_loss', test_loss[gram].avg, model.ite)
tb_logger[split].log_value(gram+'_mean_recall', 100.*test_recall[gram].avg, model.ite)
tb_logger[split].log_value(gram+'_mean_precision', 100.*test_precision[gram].avg, model.ite)
recall_gram[gram] = test_recall[gram]
precision_gram[gram] = test_precision[gram]
loss_gram[gram] = test_loss[gram].avg
print('{} set: Average loss: {:.4f}, Recall: ({:.0f}%)'.format(split, sum(loss_gram.values()), \
100. * np.mean(map((lambda x:x.avg), test_recall.values()))))
for gram in tp_class.keys():
test_loss[gram].reset()
if opt.use_analogy:
test_loss['reg'].reset()
return loss_gram, precision_gram, recall_gram
#####################
""" Define logger """
#####################
splits = [opt.train_split, opt.test_split]
# Init logger
log = Tb_logger()
logger_path = osp.join(opt.logger_dir, opt.exp_name)
if osp.exists(logger_path):
answer = input("Experiment directory %s already exists. Continue: yes/no?" %logger_path)
assert answer=='yes', 'Please speficy another experiment directory with exp_name option'
tb_logger = log.init_logger(logger_path, splits)
# Write options in directory
parser.write_opts_dir(opt, logger_path)
####################
""" Data loaders """
####################
store_ram = []
store_ram.append('objectscores') if opt.use_ram and opt.use_precompobjectscore else None
store_ram.append('appearance') if opt.use_ram and opt.use_precompappearance else None
if opt.data_name in ['hico','hicoforcocoa']:
from datasets.hico_api import Hico as Dataset
elif opt.data_name=='vrd':
from datasets.vrd_api import Vrd as Dataset
elif opt.data_name=='cocoa':
from datasets.cocoa_api import Cocoa as Dataset
loaders = {}
data_path = '{}/{}'.format(opt.data_path, opt.data_name)
image_path = '{}/{}/{}'.format(opt.data_path, opt.data_name, 'images')
cand_dir = '{}/{}/{}'.format(opt.data_path, opt.data_name, 'detections')
# Train split
dset = Dataset( data_path, \
image_path, \
opt.train_split, \
cand_dir = cand_dir,\
thresh_file = opt.thresh_file, \
use_gt = opt.use_gt, \
add_gt = opt.add_gt, \
train_mode = True, \
jittering = opt.use_jittering, \
store_ram = store_ram, \
l2norm_input = opt.l2norm_input, \
neg_GT = opt.neg_GT)
dset_loader = TrainSampler( dset, sampler_name = opt.sampler, \
num_negatives = opt.num_negatives, \
use_image = opt.use_image, \
use_precompappearance = opt.use_precompappearance, \
use_precompobjectscore = opt.use_precompobjectscore)
loaders[opt.train_split] = torch.utils.data.DataLoader(dset_loader, \
batch_size = opt.batch_size, \
shuffle = True, \
num_workers = opt.num_workers, \
collate_fn = dset_loader.collate_fn)
# Test split
dset = Dataset( data_path, \
image_path, \
opt.test_split, \
cand_dir = cand_dir,\
thresh_file = opt.thresh_file, \
use_gt = opt.use_gt, \
add_gt = opt.add_gt, \
train_mode = True, \
jittering = False, \
store_ram = store_ram, \
l2norm_input = opt.l2norm_input, \
neg_GT = opt.neg_GT)
dset_loader = TrainSampler(dset, sampler_name = opt.sampler,\
num_negatives = opt.num_negatives, \
use_image = opt.use_image, \
use_precompappearance = opt.use_precompappearance, \
use_precompobjectscore = opt.use_precompobjectscore)
loaders[opt.test_split] = torch.utils.data.DataLoader(dset_loader, \
batch_size = opt.batch_size, \
shuffle = False, \
num_workers = opt.num_workers, \
collate_fn = dset_loader.collate_fn)
####################
""" Define model """
####################
# Get all options
opt = parser.get_opts_from_dset(opt, dset) # additional options from dataset
# Define model
model = models.get_model(opt)
model = nn.DataParallel(model).cuda()
if torch.cuda.is_available():
model.cuda()
# Load pre-trained model
if opt.pretrained_model:
assert opt.start_epoch, 'Indicate epoch you start from'
if opt.start_epoch:
checkpoint = torch.load(opt.pretrained_model, map_location=lambda storage, loc: storage)
model.load_pretrained_weights(checkpoint['model'])
################
""" Speed-up """
################
model.eval()
if isinstance(model,torch.nn.DataParallel):
model = model.module
if opt.use_analogy:
model.precomp_language_features() # pre-compute unigram emb
model.precomp_sim_tables() # pre-compute similarity tables for speed-up
###########
""" Run """
###########
model.train()
print('Train classifier')
best_recall = 0
for epoch in range(opt.num_epochs):
epoch_effective = epoch + opt.start_epoch + 1
# Train
model.adjust_learning_rate(opt, epoch)
train(epoch, opt.train_split)
# Val
loss_test, precision_test, recall_test = evaluate(epoch, opt.test_split)
if epoch_effective%opt.save_epoch==0:
state = {
'epoch':epoch_effective,
'model':model.state_dict(),
'loss':loss_test,
'precision':precision_test,
'recall':recall_test,
}
torch.save(state, osp.join(logger_path, 'model_' + 'epoch' + str(epoch_effective) + '.pth.tar'))
if recall_test > best_recall:
state = {
'epoch':epoch_effective,
'model':model.state_dict(),
'min_loss':loss_test,
'precision':precision_test,
'recall':recall_test,
}
torch.save(state, osp.join(logger_path, 'model_best.pth.tar'))
best_recall = recall_test