-
Notifications
You must be signed in to change notification settings - Fork 0
/
train-ner.sh
executable file
·130 lines (109 loc) · 2.96 KB
/
train-ner.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/bin/bash
set -o nounset
set -o errexit
VERBOSE_MODE=0
function error_handler()
{
local STATUS=${1:-1}
[ ${VERBOSE_MODE} == 0 ] && exit ${STATUS}
echo "Exits abnormally at line "`caller 0`
exit ${STATUS}
}
trap "error_handler" ERR
PROGNAME=`basename ${BASH_SOURCE}`
DRY_RUN_MODE=0
function print_usage_and_exit()
{
set +x
local STATUS=$1
echo "Usage: ${PROGNAME} [-v] [-v] [--dry-run] [-h] [--help]"
echo ""
echo " Options -"
echo " -v enables verbose mode 1"
echo " -v -v enables verbose mode 2"
echo " --dry-run show what would have been dumped"
echo " -h, --help shows this help message"
exit ${STATUS:-0}
}
function debug()
{
if [ "$VERBOSE_MODE" != 0 ]; then
echo $@
fi
}
#GETOPT=`getopt -o vh --long dry-run,help -n "${PROGNAME}" -- "$@"`
GETOPT=`getopt vh $*`
if [ $? != 0 ] ; then print_usage_and_exit 1; fi
eval set -- "${GETOPT}"
while true
do case "$1" in
-v) let VERBOSE_MODE+=1; shift;;
--dry-run) DRY_RUN_MODE=1; shift;;
-h|--help) print_usage_and_exit 0;;
--) shift; break;;
*) echo "Internal error!"; exit 1;;
esac
done
if (( VERBOSE_MODE > 1 )); then
set -x
fi
if [ ${#} != 0 ]; then print_usage_and_exit 1; fi
set -o errexit
function readlink()
{
TARGET_FILE=$2
cd `dirname $TARGET_FILE`
TARGET_FILE=`basename $TARGET_FILE`
# Iterate down a (possible) chain of symlinks
while [ -L "$TARGET_FILE" ]
do
TARGET_FILE=`readlink $TARGET_FILE`
cd `dirname $TARGET_FILE`
TARGET_FILE=`basename $TARGET_FILE`
done
# Compute the canonicalized name by finding the physical path
# for the directory we're in and appending the target file.
PHYS_DIR=`pwd -P`
RESULT=$PHYS_DIR/$TARGET_FILE
echo $RESULT
}
export -f readlink
# current dir of this script
CDIR=$(readlink -f $(dirname $(readlink -f ${BASH_SOURCE[0]})))
PDIR=$(readlink -f $(dirname $(readlink -f ${BASH_SOURCE[0]}))/..)
# create labels.txt
cd ${CDIR}/data
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
cd -
MAX_LENGTH=180
MODEL_NAME_OR_PATH=./roberta-base
OUTPUT_DIR=engeval-model
BATCH_SIZE=32
NUM_EPOCHS=8
LEARNING_RATE=5e-5
WARMUP_STEPS=0
LOGGING_STEPS=50
SAVE_STEPS=100
SEED=1
function train {
python ${CDIR}/token-classification/run_ner.py \
--data_dir ${CDIR}/data \
--labels ${CDIR}/data/labels.txt \
--model_name_or_path ${MODEL_NAME_OR_PATH} \
--output_dir ${OUTPUT_DIR} \
--overwrite_output_dir \
--max_seq_length ${MAX_LENGTH} \
--num_train_epochs ${NUM_EPOCHS} \
--per_device_train_batch_size ${BATCH_SIZE} \
--learning_rate ${LEARNING_RATE} \
--warmup_steps ${WARMUP_STEPS} \
--logging_steps ${LOGGING_STEPS} \
--save_steps ${SAVE_STEPS} \
--seed ${SEED} \
--do_train \
--evaluate_during_training \
--do_eval \
--do_predict
}
rm -rf ${OUTPUT_DIR}
train