-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathread_queue.c
811 lines (684 loc) · 21.2 KB
/
read_queue.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/*
* read_queue.c: Code to set up reader/writer threads and shared queues to pass
* reads between threads in memory.
*/
/*
* Copyright (C) 2012 Tanja Magoc
* Copyright (C) 2012, 2013, 2014 Eric Biggers
*
* This file is part of FLASH, a fast tool to merge overlapping paired-end
* reads.
*
* FLASH is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version.
*
* FLASH is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with FLASH; if not, see http://www.gnu.org/licenses/.
*/
#include "iostream.h"
#include "read.h"
#include "read_io.h"
#include "read_queue.h"
#include "util.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
static struct read *
new_read(void)
{
return xzalloc(sizeof(struct read));
}
static void
free_read(struct read *r)
{
if (r) {
xfree(r->tag, r->tag_bufsz);
xfree(r->seq, r->seq_bufsz);
xfree(r->qual, r->qual_bufsz);
xfree(r, sizeof(*r));
}
}
static struct read_set *
new_read_set(size_t num_reads, bool full)
{
struct read_set *s = xmalloc(sizeof(*s) + num_reads * sizeof(s->reads[0]));
if (full) {
for (size_t i = 0; i < num_reads; i++)
s->reads[i] = new_read();
} else {
for (size_t i = 0; i < num_reads; i++)
s->reads[i] = NULL;
}
s->filled = 0;
s->num_reads = num_reads;
return s;
}
void
free_read_set(struct read_set *s)
{
if (s) {
for (size_t i = 0; i < s->num_reads; i++)
free_read(s->reads[i]);
xfree(s, sizeof(*s));
}
}
static void
init_mutex(pthread_mutex_t *mutex)
{
if (pthread_mutex_init(mutex, NULL))
fatal_error_with_errno("Failed to initialize mutex");
}
static void
init_cond(pthread_cond_t *cond)
{
if (pthread_cond_init(cond, NULL))
fatal_error_with_errno("Failed to initialize condition variable");
}
/*
* Producer-consumer queue; it holds pointers to `struct read_sets', which can
* be added or removed from the queue in a thread-safe manner using
* read_queue_put() and read_queue_get(), respectively.
*/
struct read_queue {
size_t size;
size_t front;
size_t filled;
bool terminated;
struct read_set **read_sets;
pthread_mutex_t lock;
pthread_cond_t read_set_avail_cond;
pthread_cond_t space_avail_cond;
};
static struct read_queue *
new_read_queue(size_t size, size_t reads_per_set, bool full)
{
struct read_queue *q = xmalloc(sizeof(*q));
q->read_sets = xmalloc(size * sizeof(q->read_sets[0]));
q->size = size;
q->front = 0;
if (full) {
for (size_t i = 0; i < size; i++)
q->read_sets[i] = new_read_set(reads_per_set, true);
q->filled = size;
} else {
for (size_t i = 0; i < size; i++)
q->read_sets[i] = NULL;
q->filled = 0;
}
q->terminated = false;
init_mutex(&q->lock);
init_cond(&q->read_set_avail_cond);
init_cond(&q->space_avail_cond);
return q;
}
static void
free_read_queue(struct read_queue *q)
{
if (q) {
size_t filled = q->filled;
size_t i = q->front;
while (filled--) {
free_read_set(q->read_sets[i]);
i = (i + 1) % q->size;
}
xfree(q->read_sets, q->size * sizeof(q->read_sets[0]));
pthread_mutex_destroy(&q->lock);
pthread_cond_destroy(&q->read_set_avail_cond);
pthread_cond_destroy(&q->space_avail_cond);
xfree(q, sizeof(*q));
}
}
/* Retrieves the next available read set from the queue, blocking until one is
* available. Or, returns NULL if the queue has terminated and no more read
* sets are available. */
static struct read_set *
read_queue_get(struct read_queue *q)
{
struct read_set *s;
pthread_mutex_lock(&q->lock);
while (q->filled == 0 && !q->terminated)
pthread_cond_wait(&q->read_set_avail_cond, &q->lock);
if (q->filled != 0) {
s = q->read_sets[q->front];
q->front = (q->front + 1) % q->size;
q->filled--;
pthread_cond_signal(&q->space_avail_cond);
} else
s = NULL;
pthread_mutex_unlock(&q->lock);
return s;
}
/* Put a read set into the queue, blocking until there is an empty space
* available. */
static void
read_queue_put(struct read_queue *q, struct read_set *s)
{
pthread_mutex_lock(&q->lock);
while (q->filled == q->size)
pthread_cond_wait(&q->space_avail_cond, &q->lock);
q->read_sets[(q->front + q->filled) % q->size] = s;
q->filled++;
pthread_cond_signal(&q->read_set_avail_cond);
pthread_mutex_unlock(&q->lock);
}
/* "Terminate" the specified queue. This will cause read_queue_get() to return
* NULL once the queue is empty. */
static void
read_queue_terminate(struct read_queue *q)
{
pthread_mutex_lock(&q->lock);
q->terminated = true;
pthread_cond_broadcast(&q->read_set_avail_cond);
pthread_mutex_unlock(&q->lock);
}
struct reader_params {
struct input_stream *in;
const struct read_format_params *iparams;
bool verbose;
struct read_queue *avail_read_q;
struct read_queue *unprocessed_read_1_q;
struct read_queue *unprocessed_read_2_q;
struct read_queue *unpaired_read_q;
};
struct writer_params {
struct output_stream *out;
const struct read_format_params *oparams;
struct read_queue *to_write_queue_1;
struct read_queue *to_write_queue_2;
struct read_queue *avail_queue;
};
static void
processed(uint64_t pair_no)
{
info("Processed %"PRIu64" read pairs", pair_no);
}
static void *
reader1_proc(void *_params)
{
struct reader_params *params = _params;
uint64_t pair_no = 0;
uint64_t line_no = 1;
struct read_set *s;
for (;;) {
s = read_queue_get(params->avail_read_q);
for (s->filled = 0;
s->filled < s->num_reads;
s->filled++)
{
if (!load_read(params->in, params->iparams,
s->reads[s->filled], &line_no))
goto eof_reached;
if (params->verbose && ++pair_no % 25000 == 0)
processed(pair_no);
}
/* Note: although we're placing the set in
* 'unprocessed_read_1_q', the set may in fact be read 2, not
* read 1. This procedure works the same way in both cases. */
read_queue_put(params->unprocessed_read_1_q, s);
}
eof_reached:
if (params->verbose && pair_no % 25000 != 0)
processed(pair_no);
if (s->filled)
read_queue_put(params->unprocessed_read_1_q, s);
else
free_read_set(s);
read_queue_terminate(params->unprocessed_read_1_q);
free_input_stream(params->in);
xfree(params, sizeof(*params));
return NULL;
}
static void *
reader2_proc(void *_params)
{
struct reader_params *params = _params;
struct read_set *s_read1, *s_read2, *s_unpaired = NULL;
uint64_t pair_no = 0;
uint64_t line_no = 1;
s_read1 = read_queue_get(params->avail_read_q);
s_read1->filled = 0;
s_read2 = read_queue_get(params->avail_read_q);
s_read2->filled = 0;
if (params->unpaired_read_q) {
s_unpaired = read_queue_get(params->avail_read_q);
s_unpaired->filled = 0;
}
while (load_read_pair(params->in, params->iparams,
s_read1->reads[s_read1->filled],
s_read2->reads[s_read1->filled],
&line_no))
{
if (s_read2->reads[s_read1->filled]->seq_len) {
/* Read pair. */
++s_read1->filled;
++s_read2->filled;
if (s_read1->filled == s_read1->num_reads) {
read_queue_put(params->unprocessed_read_1_q, s_read1);
read_queue_put(params->unprocessed_read_2_q, s_read2);
s_read1 = read_queue_get(params->avail_read_q);
s_read1->filled = 0;
s_read2 = read_queue_get(params->avail_read_q);
s_read2->filled = 0;
}
if (params->verbose && ++pair_no % 25000 == 0)
processed(pair_no);
} else if (params->unpaired_read_q) {
/* Actually an unpaired read. */
struct read *r = s_read1->reads[s_read1->filled];
s_read1->reads[s_read1->filled] =
s_unpaired->reads[s_unpaired->filled];
s_unpaired->reads[s_unpaired->filled] = r;
++s_unpaired->filled;
if (s_unpaired->filled == s_unpaired->num_reads) {
s_unpaired->type = READS_UNPAIRED;
read_queue_put(params->unpaired_read_q, s_unpaired);
s_unpaired = read_queue_get(params->avail_read_q);
s_unpaired->filled = 0;
}
}
}
if (params->verbose && pair_no % 25000 != 0)
processed(pair_no);
if (s_read1->filled)
read_queue_put(params->unprocessed_read_1_q, s_read1);
else
free_read_set(s_read1);
if (s_read2->filled)
read_queue_put(params->unprocessed_read_2_q, s_read2);
else
free_read_set(s_read2);
if (s_unpaired) {
if (s_unpaired->filled) {
s_unpaired->type = READS_UNPAIRED;
read_queue_put(params->unpaired_read_q, s_unpaired);
} else {
free_read_set(s_unpaired);
}
}
read_queue_terminate(params->unprocessed_read_1_q);
read_queue_terminate(params->unprocessed_read_2_q);
free_input_stream(params->in);
xfree(params, sizeof(*params));
return NULL;
}
static void *
writer_proc(void *_params)
{
struct writer_params *params = _params;
struct read_set *s1, *s2;
for (;;) {
s1 = read_queue_get(params->to_write_queue_1);
if (!s1)
break;
if (params->to_write_queue_2 && s1->type == READS_UNCOMBINED) {
/* Get other read in uncombined pair */
s2 = read_queue_get(params->to_write_queue_2);
assert(s2);
assert(s1->filled == s2->filled);
} else {
s2 = NULL;
}
for (size_t i = 0; i < s1->filled; i++) {
if (s2)
write_read_pair(params->out, params->oparams,
s1->reads[i], s2->reads[i]);
else
write_read(params->out, params->oparams,
s1->reads[i]);
}
read_queue_put(params->avail_queue, s1);
if (s2)
read_queue_put(params->avail_queue, s2);
}
free_output_stream(params->out);
xfree(params, sizeof(*params));
return NULL;
}
static pthread_t
start_reader2(struct input_stream *in,
const struct read_format_params *iparams,
bool verbose,
struct read_queue *avail_read_q,
struct read_queue *unprocessed_read_1_q,
struct read_queue *unprocessed_read_2_q,
struct read_queue *unpaired_read_q)
{
struct reader_params *params = xmalloc(sizeof(*params));
params->in = in;
params->iparams = iparams;
params->verbose = verbose;
params->avail_read_q = avail_read_q;
params->unprocessed_read_1_q = unprocessed_read_1_q;
params->unprocessed_read_2_q = unprocessed_read_2_q;
params->unpaired_read_q = unpaired_read_q;
return create_thread(reader2_proc, params);
}
static pthread_t
start_reader1(struct input_stream *in,
const struct read_format_params *iparams,
bool verbose,
struct read_queue *avail_read_q,
struct read_queue *unprocessed_read_q)
{
struct reader_params *params = xmalloc(sizeof(*params));
params->in = in;
params->iparams = iparams;
params->verbose = verbose;
params->avail_read_q = avail_read_q;
params->unprocessed_read_1_q = unprocessed_read_q;
params->unprocessed_read_2_q = NULL;
params->unpaired_read_q = NULL;
return create_thread(reader1_proc, params);
}
static pthread_t
start_writer2(struct output_stream *out,
const struct read_format_params *oparams,
struct read_queue *to_write_queue_1,
struct read_queue *to_write_queue_2,
struct read_queue *avail_queue)
{
struct writer_params *params = xmalloc(sizeof(*params));
params->out = out;
params->oparams = oparams;
params->to_write_queue_1 = to_write_queue_1;
params->to_write_queue_2 = to_write_queue_2;
params->avail_queue = avail_queue;
return create_thread(writer_proc, params);
}
static pthread_t
start_writer1(struct output_stream *out,
const struct read_format_params *oparams,
struct read_queue *to_write_queue,
struct read_queue *avail_queue)
{
return start_writer2(out, oparams, to_write_queue, NULL, avail_queue);
}
struct read_io_handle {
pthread_t reader_1;
pthread_t reader_2;
pthread_t writer_1;
pthread_t writer_2;
pthread_t writer_3;
bool reader_1_started;
bool reader_2_started;
bool writer_1_started;
bool writer_2_started;
bool writer_3_started;
unsigned combiner_threads_remaining;
pthread_mutex_t combiner_threads_remaining_mutex;
struct read_queue *avail_read_q;
struct read_queue *unprocessed_read_1_q;
struct read_queue *unprocessed_read_2_q;
struct read_queue *combined_read_q;
struct read_queue *uncombined_read_1_q;
struct read_queue *uncombined_read_2_q;
pthread_mutex_t get_unprocessed_pair_mutex;
pthread_mutex_t put_uncombined_pair_mutex;
};
/* Retrieves some unprocessed read pairs from the I/O layer. Returns %true iff
* more reads were available; returns false if end of file was reached. */
bool
get_unprocessed_read_pairs(struct read_io_handle *h, struct read_set **s1_p,
struct read_set **s2_p)
{
/* get_unprocessed_pair_mutex ensures the reads are paired up correctly.
*/
struct read_set *s1, *s2;
pthread_mutex_lock(&h->get_unprocessed_pair_mutex);
s1 = read_queue_get(h->unprocessed_read_1_q);
s2 = read_queue_get(h->unprocessed_read_2_q);
pthread_mutex_unlock(&h->get_unprocessed_pair_mutex);
if (s1 && s2) {
if (s1->filled != s2->filled)
goto mismatch;
*s1_p = s1;
*s2_p = s2;
return true;
}
if (s1 || s2)
goto mismatch;
return false;
mismatch:
fatal_error("Input files do not contain the same number of reads");
}
/* Submits a set of combined reads to the I/O layer to be written. */
void
put_combined_reads(struct read_io_handle *h, struct read_set *s)
{
s->type = READS_COMBINED;
read_queue_put(h->combined_read_q, s);
}
/* Submits a set of uncombined read pairs to the I/O layer to be written. */
void
put_uncombined_read_pairs(struct read_io_handle *h,
struct read_set *s1, struct read_set *s2)
{
s1->type = READS_UNCOMBINED;
s2->type = READS_UNCOMBINED;
/* put_unprocessed_pair_mutex ensures the reads are paired up correctly.
*/
pthread_mutex_lock(&h->put_uncombined_pair_mutex);
read_queue_put(h->uncombined_read_1_q, s1);
read_queue_put(h->uncombined_read_2_q, s2);
pthread_mutex_unlock(&h->put_uncombined_pair_mutex);
}
/* Retrieve a read set (full of read structures) that is ready to be reused. */
struct read_set *
get_avail_read_set(struct read_io_handle *h)
{
struct read_set *s;
s = read_queue_get(h->avail_read_q);
s->filled = 0;
return s;
}
/* Return a set of read pairs to the pool for reuse. */
void
put_avail_read_pairs(struct read_io_handle *h,
struct read_set *s1, struct read_set *s2)
{
read_queue_put(h->avail_read_q, s1);
read_queue_put(h->avail_read_q, s2);
}
/* Notify the I/O layer that a combiner thread has terminated.
* When all the combiner threads have been terminated, the writers will shut
* down. */
void
notify_combiner_terminated(struct read_io_handle *h)
{
pthread_mutex_lock(&h->combiner_threads_remaining_mutex);
if (--h->combiner_threads_remaining == 0) {
/* Terminate the writer queues. */
read_queue_terminate(h->combined_read_q);
if (h->uncombined_read_1_q != h->avail_read_q &&
h->uncombined_read_1_q != h->combined_read_q)
read_queue_terminate(h->uncombined_read_1_q);
if (h->uncombined_read_2_q != h->avail_read_q)
read_queue_terminate(h->uncombined_read_2_q);
}
pthread_mutex_unlock(&h->combiner_threads_remaining_mutex);
}
struct read_set *
new_empty_read_set(struct read_io_handle *h)
{
return new_read_set(BASE_READS_PER_READ_SET +
(h->combiner_threads_remaining * PERTHREAD_READS_PER_READ_SET),
false);
}
/* Starts the FLASH I/O layer, which is responsible for input/output of reads.
*
* If @in_2 is not NULL, then @in_1 and @in_2 are the input files for read 1 and
* read 2 of the pairs, respectively. Otherwise @in_1 contains both read 1 and
* read 2 of the pairs interleaved.
*
* Either 1, 2, or 3 output files may be specified --- see below for more
* details. */
struct read_io_handle *
start_readers_and_writers(struct input_stream *in_1,
struct input_stream *in_2,
struct output_stream *out_combined,
struct output_stream *out_uncombined_1,
struct output_stream *out_uncombined_2,
const struct read_format_params *iparams,
const struct read_format_params *oparams,
unsigned num_combiner_threads,
bool verbose)
{
assert(in_1 != NULL);
assert(out_combined != NULL &&
(out_uncombined_1 != NULL || out_uncombined_2 == NULL));
assert(iparams != NULL);
assert(oparams != NULL);
assert(num_combiner_threads > 0);
if (verbose)
info("Starting reader and writer threads");
struct read_io_handle *h = xzalloc(sizeof(*h));
size_t reads_per_set = BASE_READS_PER_READ_SET +
(num_combiner_threads * PERTHREAD_READS_PER_READ_SET);
size_t queue_size = num_combiner_threads * QUEUE_SIZE_PER_THREAD;
h->avail_read_q = new_read_queue(queue_size * 3, reads_per_set, true);
h->unprocessed_read_1_q = new_read_queue(queue_size, reads_per_set, false);
h->unprocessed_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->combined_read_q = new_read_queue(queue_size, reads_per_set, false);
init_mutex(&h->get_unprocessed_pair_mutex);
init_mutex(&h->put_uncombined_pair_mutex);
h->combiner_threads_remaining = num_combiner_threads;
init_mutex(&h->combiner_threads_remaining_mutex);
/* Start writers. */
if (out_uncombined_2) {
/* All 3 output files specified: one for combined reads, one for
* read 1 of uncombined pairs, and one for read 2 of uncombined
* pairs. */
h->uncombined_read_1_q = new_read_queue(queue_size, reads_per_set, false);
h->uncombined_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->writer_1 = start_writer1(out_combined, oparams,
h->combined_read_q,
h->avail_read_q);
h->writer_1_started = true;
h->writer_2 = start_writer1(out_uncombined_1, oparams,
h->uncombined_read_1_q,
h->avail_read_q);
h->writer_2_started = true;
h->writer_3 = start_writer1(out_uncombined_2, oparams,
h->uncombined_read_2_q,
h->avail_read_q);
h->writer_3_started = true;
} else if (out_uncombined_1) {
/* 2 output files specified: one for combined reads and one for
* uncombined pairs. */
h->uncombined_read_1_q = new_read_queue(queue_size, reads_per_set, false);
h->uncombined_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->writer_1 = start_writer1(out_combined, oparams,
h->combined_read_q,
h->avail_read_q);
h->writer_1_started = true;
h->writer_2 = start_writer2(out_uncombined_1, oparams,
h->uncombined_read_1_q,
h->uncombined_read_2_q,
h->avail_read_q);
h->writer_2_started = true;
} else {
/* 1 output file specified: combined reads, plus optionally
* uncombined pairs if supported by the format. */
if (read_format_supports_mixed_reads(oparams)) {
h->uncombined_read_1_q = h->combined_read_q;
h->uncombined_read_2_q = new_read_queue(queue_size, reads_per_set, false);
h->writer_1 = start_writer2(out_combined, oparams,
h->combined_read_q,
h->uncombined_read_2_q,
h->avail_read_q);
h->writer_1_started = true;
} else {
/* Can only output combined reads.
* Reroute uncombined reads back to the queue of
* available (for reuse) reads. */
h->uncombined_read_1_q = h->avail_read_q;
h->uncombined_read_2_q = h->avail_read_q;
h->writer_1 = start_writer1(out_combined, oparams,
h->combined_read_q,
h->avail_read_q);
h->writer_1_started = true;
}
}
/* Start readers. */
if (in_2) {
/* Two input files: read 1 in each pair comes from the first
* file, and read 2 in each pair comes from the second file.
*
* Only set @verbose for one. */
h->reader_1 = start_reader1(in_1,
iparams,
verbose,
h->avail_read_q,
h->unprocessed_read_1_q);
h->reader_1_started = true;
h->reader_2 = start_reader1(in_2,
iparams,
false,
h->avail_read_q,
h->unprocessed_read_2_q);
h->reader_2_started = true;
} else {
/* One input file: both reads in each pair come from the same
* file. */
struct read_queue *unpaired_read_q = NULL;
if (read_format_supports_mixed_reads(iparams)) {
if (!out_uncombined_2 &&
read_format_supports_mixed_reads(oparams))
unpaired_read_q = h->uncombined_read_1_q;
else
warning("Any unpaired reads in the input file "
"will be ignored!\n\t"
"Use tab-delimited output to "
"preserve them.");
}
h->reader_1 = start_reader2(in_1,
iparams,
verbose,
h->avail_read_q,
h->unprocessed_read_1_q,
h->unprocessed_read_2_q,
unpaired_read_q);
h->reader_1_started = true;
}
return h;
}
/* Terminates the FLASH I/O layer, which is responsible for input/output of
* reads.
*/
void
stop_readers_and_writers(struct read_io_handle *h)
{
if (h->reader_1_started)
join_thread(h->reader_1);
if (h->reader_2_started)
join_thread(h->reader_2);
if (h->writer_1_started)
join_thread(h->writer_1);
if (h->writer_2_started)
join_thread(h->writer_2);
if (h->writer_3_started)
join_thread(h->writer_3);
free_read_queue(h->avail_read_q);
free_read_queue(h->unprocessed_read_1_q);
free_read_queue(h->unprocessed_read_2_q);
free_read_queue(h->combined_read_q);
if (h->uncombined_read_1_q != h->avail_read_q &&
h->uncombined_read_1_q != h->combined_read_q)
free_read_queue(h->uncombined_read_1_q);
if (h->uncombined_read_2_q != h->avail_read_q)
free_read_queue(h->uncombined_read_2_q);
pthread_mutex_destroy(&h->put_uncombined_pair_mutex);
pthread_mutex_destroy(&h->get_unprocessed_pair_mutex);
pthread_mutex_destroy(&h->combiner_threads_remaining_mutex);
xfree(h, sizeof(*h));
}