-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
367 lines (309 loc) · 15.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from ast import arg
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import re
import os
import argparse
import random
import numpy as np
import time
import json
from loader import Loader2, Loader
from utils import setup_logger
from sklearn.cluster import KMeans
from custom_datasets import trans_dict, cls_dict, get_num_images
from models import models_dict
random.seed(0)
def get_args():
parser = argparse.ArgumentParser(description='Active Learning Process')
# Dataset-related argument
parser.add_argument('--dataset', '-d', default='cifar10', type=str, help='Name of the dataset.')
parser.add_argument('--datapath', default='DATAPATH', type=str, help='Path to the dataset.')
# Model-related argument
parser.add_argument('--net', '-n', default='vgg16', type=str, help='Name of the model.')
# AL-related arguments
parser.add_argument('--sorted_dataset_path', default='', type=str, help='path to the unlabeled_pool.txt generated by kmeans.py')
parser.add_argument('--sort', default='high2low', choices=['low2high', 'high2low', 'uniform'], type=str, help='Sorting order.')
parser.add_argument('--first', default='high1st', choices=['low1st', 'high1st', 'uni', 'rand'], type=str, help='First choice.')
parser.add_argument('--sampling', '-s', type=str, required=True, default='confidence', choices=['confidence', 'entropy', 'loss', 'rand'], help='Types of sampling.')
parser.add_argument('--cycles', default=None, type=int, help='Number of cycles.')
parser.add_argument('--start_cycle', default=0, type=int, help='Starting cycle.')
parser.add_argument('--beta', default=1.0, type=float, help='Balance factor.')
parser.add_argument('--resume', '-r', default=None, type=str, help='Checkpoint path for resuming training.')
parser.add_argument('--save', default=None, type=str, help='Save path for trained models.')
parser.add_argument('--addendum', default=5000, type=int, help='Length of unlabeled pool for labeling.')
# Training-related arguments
parser.add_argument("--milestones", nargs='+', type=int, default=[30, 60, 90], help='List of epoch milestones.')
parser.add_argument('--epochs', default=100, type=int, help='Number of training epochs.')
parser.add_argument('--batch_size', default=128, type=int, help='Batch size for training.')
parser.add_argument('--lr', default=0.1, type=float, help='Learning rate for training.')
parser.add_argument('--per_samples_list', nargs='+', default=[10, 10, 10, 10, 10, 10, 10, 10, 10, 10], type=int, help='Percentage of labeled samples in each cycle.')
parser.add_argument('--momentum', default=0.9, type=float, help='Momentum for optimizer.')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for optimizer.')
args = parser.parse_args()
print(f'saving in {args.save}')
return args
def train(models, criterion, optimizer, epoch, trainloader):
models['backbone'].train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizers['backbone'].zero_grad()
outputs = models['backbone'](inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizers['backbone'].step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
logger.info('Train:[{}] Loss: {:.3f} | Acc: {:.3f}'.format(epoch, train_loss/(batch_idx+1), 100.*correct/total))
def test(models, criterion, epoch, cycle):
global best_acc
models['backbone'].eval()
test_loss = 0
correct = 0
total = 0
save_label = True if epoch == args.epochs - 1 else False
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs, feat = models['backbone'](inputs, is_feat=True)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
logger.info('Test: [{}] Loss: {:.3f} | Acc: {:.3f}'.format(epoch, test_loss/(batch_idx+1), 100.*correct/total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
state = {
'net': models['backbone'].state_dict(),
'acc': acc,
'epoch': epoch
}
torch.save(state, os.path.join(args.save, 'main_{}.pth'.format(cycle)))
logger.info('Saved main_{}.pth with acc={}!'.format(cycle, acc))
best_acc = acc
def get_class_balanced(models, samples, cycle):
'''class-balanced sampling (pseudo labeling)'''
# dictionary with args.num_classes keys as class labels
net = models['backbone']
class_dict = {}
[class_dict.setdefault(x,[]) for x in range(args.num_classes)]
sub5k = Loader2(path=os.path.join(args.datapath, args.dataset), is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
# overflow goes into remaining
remaining = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
_, predicted = outputs.max(1)
if len(class_dict[predicted.item()]) < 100: # add until len(class_dict) == 100
class_dict[predicted.item()].append(samples[idx])
else: # add the rest of them in remaining
remaining.append(samples[idx])
# progress_bar(idx, len(ploader))
sample2k = []
for items in class_dict.values():
if len(items) == 100:
sample2k.extend(items)
else:
# supplement samples from remaining
sample2k.extend(items)
add = 100 - len(items)
sample2k.extend(remaining[:add])
remaining = remaining[add:]
return sample2k
def get_confidence(models, samples, cycle):
'''default: confidence sampling (pseudo labeling)
return 1k samples w/ lowest top1 score'''
net = models['backbone']
sub5k = Loader2(path=os.path.join(args.datapath, args.dataset), is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
top1_scores = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
scores, predicted = outputs.max(1)
outputs = F.normalize(outputs, dim=1) # save top1 confidence score
probs = F.softmax(outputs, dim=1)
top1_scores.append(probs[0][predicted.item()].cpu())
idx = np.argsort(top1_scores)
samples = np.array(samples)
return samples[idx[:num_samples_list[cycle]]]
def get_entropy(models, samples, cycle):
'''entropy sampling'''
net = models['backbone']
sub5k = Loader2(path=os.path.join(args.datapath, args.dataset), is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
top1_scores = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
e = -1.0 * torch.sum(F.softmax(outputs, dim=1) * F.log_softmax(outputs, dim=1), dim=1)
top1_scores.append(e.view(e.size(0)).cpu())
idx = np.argsort(top1_scores)
samples = np.array(samples)
return samples[idx[-num_samples_list[cycle]:]]
def get_kmeans(models, samples, cycle):
'''k means sampling'''
net = models['backbone']
sub5k = Loader2(path=os.path.join(args.datapath, args.dataset), is_train=False, transform=transform_test, path_list=samples)
ploader = torch.utils.data.DataLoader(sub5k, batch_size=1, shuffle=False, num_workers=2)
feats = []
net.eval()
with torch.no_grad():
for idx, (inputs, targets) in enumerate(ploader):
inputs, targets = inputs.to(device), targets.to(device)
_, feat = net(inputs, is_feat=True)
feats.append(np.array(torch.squeeze(feat).cpu()))
k_means = KMeans(init='k-means++', n_clusters=num_samples_list[cycle], n_init=10).fit(feats)
distances = k_means.transform(feats) # 每个数据点到每个簇心的距离,维度-->(样本个数,类簇个数)
center_idx = np.argmin(distances, axis=0) # 获取distances中每列最小的元素值索引
samples = np.array(samples)
return samples[center_idx]
def get_random(models, samples, cycle):
'''random sampling'''
idx = [random.randint(0, len(samples)-1) for _ in range(num_samples_list[cycle])]
samples = np.array(samples)
return samples[idx]
def save(name, file):
np.save(name, file)
print(name + ' saved!')
if __name__ == '__main__':
args = get_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0
args.num_images = get_num_images(args.dataset)
num_samples_list = [int(i*0.01*args.num_images) for i in args.per_samples_list]
args.cycles = len(num_samples_list) if args.cycles is None else args.cycles
print(f'num samples list: {num_samples_list}')
# Data
print('==> Preparing data..')
assert args.dataset in cls_dict
args.num_classes = cls_dict[args.dataset]
transform_train, transform_test = trans_dict[args.dataset]
testset = Loader(path=os.path.join(args.datapath, args.dataset), is_train=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Model
print('=> Loading net {}'.format(args.net))
net = models_dict[args.net](num_classes=args.num_classes)
models = {'backbone': net}
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
labeled_path = os.path.join(args.save, 'labeled')
os.makedirs(labeled_path, exist_ok=True)
logger = setup_logger(name='main', output=args.save)
logger.info(args)
logger.info(f'==> Saving in {args.save}')
sampling_dict = {
'class_balanced': get_class_balanced,
'confidence': get_confidence,
'entropy': get_entropy,
'rand':get_random,
'kmeans': get_kmeans,
}
get_sampling = sampling_dict[args.sampling]
auto_resume = False
if auto_resume:
main_best_file = os.path.join(args.save, 'main_best.txt')
if os.path.exists(main_best_file):
with open(main_best_file) as f:
lines = f.readlines()
if len(lines) > 1:
latest_cycle = int(lines[-1].split()[0])
args.resume = os.path.join(args.save, f"main_{latest_cycle}.pth")
args.start_cycle = latest_cycle + 1
print(f'Auto resume from {args.resume}, start from {args.start_cycle}')
print('==> Training..')
start_time = time.time()
labeled = []
for cycle in range(args.start_cycle, args.cycles):
criterion = criterion_test = nn.CrossEntropyLoss()
optim_backbone = optim.SGD(models['backbone'].parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
sched_backbone = torch.optim.lr_scheduler.MultiStepLR(optim_backbone, milestones=args.milestones)
optimizers = {'backbone': optim_backbone, }
schedulers = {'backbone': sched_backbone, }
best_acc = 0
logger.info('Cycle: {}'.format(cycle))
if cycle == args.start_cycle:
if args.sorted_dataset_path.endswith('.npy'):
sorted_dataset = np.load(args.sorted_dataset_path)
elif args.sorted_dataset_path.endswith('.txt'):
with open(os.path.join(args.sorted_dataset_path), 'r') as f:
sorted_dataset = [line.strip() for line in f.readlines()]
else:
raise ValueError(args.sorted_dataset_path)
if cycle == 0:
begin_idx = 0
end_idx = int(args.beta*args.addendum)
samples = sorted_dataset[:end_idx]
logger.info(f'sample range: {0} -> {end_idx} unlabeled lenth: {len(samples)}')
elif cycle == args.cycles - 1:
begin_idx = int(args.num_images-args.beta*args.addendum)
end_idx = args.num_images
ori_samples = sorted_dataset[begin_idx:]
samples = np.setdiff1d(ori_samples, labeled)
logger.info(f'sample range: {begin_idx} -> {end_idx} lenth: {len(ori_samples)} unlabeled lenth: {len(samples)}')
else:
begin_idx = int((cycle+1)*args.addendum - (args.beta-1)/2*args.addendum)
end_idx = int((cycle+2)*args.addendum + (args.beta-1)/2*args.addendum)
ori_samples = sorted_dataset[begin_idx:end_idx]
samples = np.setdiff1d(ori_samples, labeled)
logger.info(f'sample range: {begin_idx} -> {end_idx} lenth: {len(ori_samples)} unlabeled lenth: {len(samples)}')
if cycle > 0:
print('>> Getting previous checkpoint')
if args.start_cycle > 0 and cycle == args.start_cycle:
assert os.path.exists(args.resume)
checkpoint = torch.load(args.resume)
labeled = np.load(os.path.join(labeled_path, f'labeled_{cycle}.pth'))
best_acc = checkpoint['acc']
else:
checkpoint = torch.load(os.path.join(args.save, f'main_{cycle-1}.pth'))
models['backbone'].load_state_dict(checkpoint['net'])
print(f"cycle {cycle-1} best acc: {best_acc}")
sample2k = get_sampling(models, samples, cycle)
else:
samples = np.array(samples)
k = num_samples_list[cycle]
if args.first == 'uni':
sample2k = samples[[int(j*args.addendum/k) for j in range(k)]] if (args.large or args.small) else samples[[int(2*j*args.addendum/k) for j in range(k)]]
elif args.first == 'high1st':
sample2k = samples[:k]
elif args.first == 'low1st':
sample2k = samples[-k:]
elif args.first == 'rand':
sample2k = np.array(random.sample(list(samples), k))
else: raise ValueError('Sort method {} is not supported!'.format(args.first))
labeled.extend(sample2k)
np.save(os.path.join(labeled_path, f'labeled_{cycle}.pth'), labeled)
logger.info(f'>> Labeled length: {len(labeled)}')
trainset = Loader2(path=os.path.join(args.datapath, args.dataset), is_train=True, transform=transform_train, path_list=labeled)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=2)
for epoch in range(args.epochs):
train(models, criterion, optimizers, epoch, trainloader)
test(models, criterion_test, epoch, cycle)
present_time = time.time()
epochs_before = epoch - args.start_epoch + 1 + cycle * args.epochs
epochs_after = args.epochs - epoch - 1 + (args.cycles - cycle - 1) * args.epochs
eta = (present_time - start_time) / epochs_before * epochs_after
eta = time.strftime("%dd %H:%M:%S", time.gmtime(eta))
print('Eta: {}'.format(eta))
schedulers['backbone'].step()
with open(os.path.join(args.save, 'main_best.txt'), 'a') as f:
f.write(str(cycle) + ' ' + str(best_acc)+'\n')
print('done')