-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathsort-color.py
311 lines (281 loc) · 9.22 KB
/
sort-color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import numpy as np
import os
import cv2
import shutil
from sklearn.cluster import KMeans
from skimage.color import rgb2lab, deltaE_cie76
from collections import Counter
def parse_args():
desc = "Tools to normalize an image dataset"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('-v','--verbose', action='store_true',
help='Print progress to console.')
parser.add_argument('-i','--input_folder', type=str,
default='./input/',
help='Directory path to the inputs folder. (default: %(default)s)')
parser.add_argument('-o','--output_folder', type=str,
default='./output/',
help='Directory path to the outputs folder. (default: %(default)s)')
parser.add_argument('-t','--threshold', type=int,
default=40,
help='Color match threshold (default: %(default)s)')
parser.add_argument('--rgb', type=str,
default=None,
help='Comma separated RGB value to match against (default: %(default)s')
parser.add_argument('-c', '--colors', type=str,
default='red,orange,yellow,green,blue,purple,black,white',
help='Comma separated list of W3C color keywords to sort by (default: %(default)s')
args = parser.parse_args()
return args
# Load the image and convert the colorspace
def get_image(image_path):
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
# Get the most dominant color from the image
# Largely based on the work of Karan Bhanot:
# https://towardsdatascience.com/color-identification-in-images-machine-learning-application-b26e770c4c71
def get_dominant_color(image):
# Resize image to help speed up processing
modified_image = cv2.resize(image, (512, 512), interpolation = cv2.INTER_AREA)
modified_image = modified_image.reshape(modified_image.shape[0]*modified_image.shape[1], 3)
clf = KMeans(n_clusters = 8)
labels = clf.fit_predict(modified_image)
counts = Counter(labels)
# sort to ensure correct color percentage
counts = dict(sorted(counts.items()))
center_colors = clf.cluster_centers_
# We get ordered colors by iterating through the keys
ordered_colors = [center_colors[i] for i in counts.keys()]
rgb_colors = [ordered_colors[i] for i in counts.keys()]
dominant_index = max(counts, key=counts.get)
if(args.verbose): print('Dominant color: ' + str(rgb_colors[dominant_index]))
return rgb_colors[dominant_index]
# Pass an image path and if it matches any of the colors
# It will be sorted into that directory
def sort_image_by_color(image):
dominant_color = get_dominant_color(get_image(image))
dominant_lab = rgb2lab(np.uint8(np.asarray([[dominant_color]])))
for i in range(len(color_list)):
color_lab = rgb2lab(np.uint8(np.asarray([[color_list[i]]])))
diff = deltaE_cie76(dominant_lab, color_lab)
if (diff < args.threshold):
# If RGB was used, it goes directly in the output directory
if (args.rgb != None):
# Copy it there
if(args.verbose): print('Copying to : ' + args.output_folder)
shutil.copy2(image, args.output_folder)
else:
# Look up the color name
colors = args.colors.split(',')
color_path = os.path.join(args.output_folder, colors[i].lower())
if not os.path.exists(color_path):
os.makedirs(color_path)
# Copy it there
if(args.verbose): print('Copying to : ' + color_path)
shutil.copy2(image, color_path)
def main():
global args
global color_list
color_list = []
args = parse_args()
os.environ['OPENCV_IO_ENABLE_JASPER']= "true"
# Color dictionary
# See: https://en.wikipedia.org/wiki/Web_colors#X11_color_names
COLORS = {
'aliceblue': [240,248,255],
'antiquewhite': [250,235,215],
'aqua': [0,255,255],
'aquamarine': [127,255,212],
'azure': [240,255,255],
'beige': [245,245,220],
'bisque': [255,228,196],
'black': [0,0,0],
'blanchedalmond': [255,235,205],
'blue': [0,0,255],
'blueviolet': [138,43,226],
'brown': [165,42,42],
'burlywood': [222,184,135],
'cadetblue': [95,158,160],
'chartreuse': [127,255,0],
'chocolate': [210,105,30],
'coral': [255,127,80],
'cornflowerblue': [100,149,237],
'cornsilk': [255,248,220],
'crimson': [220,20,60],
'cyan': [0,255,255],
'darkblue': [0,0,139],
'darkcyan': [139,139],
'darkgoldenrod': [184,134,11],
'darkgray': [169,169,169],
'darkgreen': [0,100,0],
'darkgrey': [169,169,169],
'darkkhaki': [189,183,107],
'darkmagenta': [139,0,139],
'darkolivegreen': [85,107,47],
'darkorange': [255,140,0],
'darkorchid': [153,50,204],
'darkred': [139,0,0],
'darksalmon': [233,150,122],
'darkseagreen': [143,188,143],
'darkslateblue': [72,61,139],
'darkslategray': [47,79,79],
'darkslategrey': [47,79,79],
'darkturquoise': [206,209],
'darkviolet': [148,0,211],
'deeppink': [255,20,147],
'deepskyblue': [0,191,255],
'dimgray': [105,105,105],
'dimgrey': [105,105,105],
'dodgerblue': [30,144,255],
'firebrick': [178,34,34],
'floralwhite': [255,250,240],
'forestgreen': [34,139,34],
'fuchsia': [255,0,255],
'gainsboro': [220,220,220],
'ghostwhite': [248,248,255],
'gold': [255,215,0],
'goldenrod': [218,165,32],
'gray': [128,128,128],
'green': [0,128,0],
'greenyellow': [173,255,47],
'grey': [128,128,128],
'honeydew': [240,255,240],
'hotpink': [255,105,180],
'indianred': [205,92,92],
'indigo': [75,0,130],
'ivory': [255,255,240],
'khaki': [240,230,140],
'lavender': [230,230,250],
'lavenderblush': [255,240,245],
'lawngreen': [124,252,0],
'lemonchiffon': [255,250,205],
'lightblue': [173,216,230],
'lightcoral': [240,128,128],
'lightcyan': [224,255,255],
'lightgoldenrodyellow': [250,250,210],
'lightgray': [211,211,211],
'lightgreen': [144,238,144],
'lightgrey': [211,211,211],
'lightpink': [255,182,193],
'lightsalmon': [255,160,122],
'lightseagreen': [32,178,170],
'lightskyblue': [135,206,250],
'lightslategray': [119,136,153],
'lightslategrey': [119,136,153],
'lightsteelblue': [176,196,222],
'lightyellow': [255,255,224],
'lime': [0,255,0],
'limegreen': [50,205,50],
'linen': [250,240,230],
'magenta': [255,0,255],
'maroon': [128,0,0],
'mediumaquamarine': [102,205,170],
'mediumblue': [0,0,205],
'mediumorchid': [186,85,211],
'mediumpurple': [147,112,219],
'mediumseagreen': [60,179,113],
'mediumslateblue': [123,104,238],
'mediumspringgreen': [250,154],
'mediumturquoise': [72,209,204],
'mediumvioletred': [199,21,133],
'midnightblue': [25,25,112],
'mintcream': [245,255,250],
'mistyrose': [255,228,225],
'moccasin': [255,228,181],
'navajowhite': [255,222,173],
'navy': [0,0,128],
'oldlace': [253,245,230],
'olive': [128,128,0],
'olivedrab': [107,142,35],
'orange': [255,165,0],
'orangered': [255,69,0],
'orchid': [218,112,214],
'palegoldenrod': [238,232,170],
'palegreen': [152,251,152],
'paleturquoise': [175,238,238],
'palevioletred': [219,112,147],
'papayawhip': [255,239,213],
'peachpuff': [255,218,185],
'peru': [205,133,63],
'pink': [255,192,203],
'plum': [221,160,221],
'powderblue': [176,224,230],
'purple': [128,0,128],
'red': [255,0,0],
'rosybrown': [188,143,143],
'royalblue': [65,105,225],
'saddlebrown': [139,69,19],
'salmon': [250,128,114],
'sandybrown': [244,164,96],
'seagreen': [46,139,87],
'seashell': [255,245,238],
'sienna': [160,82,45],
'silver': [192,192,192],
'skyblue': [135,206,235],
'slateblue': [106,90,205],
'slategray': [112,128,144],
'slategrey': [112,128,144],
'snow': [255,250,250],
'springgreen': [255,127],
'steelblue': [70,130,180],
'tan': [210,180,140],
'teal': [0,128,128],
'thistle': [216,191,216],
'tomato': [255,99,71],
'turquoise': [64,224,208],
'violet': [238,130,238],
'wheat': [245,222,179],
'white': [255,255,255],
'whitesmoke': [245,245,245],
'yellow': [255,255,0],
'yellowgreen': [154,205,50]
}
# Make sure the output folder has a trailing slash, create it if necessary
args.output_folder = os.path.join(args.output_folder, '')
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
# RGB validation
if (args.rgb != None):
values = args.rgb.split(',')
if len(values) != 3:
print("Invalid number of RGB values: " + str(len(values)))
return
for value in values:
if int(value) not in range(0, 256):
print("Invalid RGB value: " + value)
return
color_list = [[int(value) for value in values]]
# Color name validation
if (args.rgb == None):
colors = args.colors.split(',')
for color in colors:
if color.lower() in COLORS:
color_list.append(COLORS[color.lower()])
else:
print("Invalid color name: " + color)
return
# If the input folder is a directory
if os.path.isdir(args.input_folder):
print("Processing folder: " + args.input_folder)
# If the input folder is a file itself
elif os.path.isfile(args.input_folder):
if (args.verbose): print('Processing image: ' + args.input_folder)
sort_image_by_color(args.input_folder)
return
# If it's neither a directory or file, bail
else:
print("Not a working input_folder path: " + args.input_folder)
return
for root, subdirs, files in os.walk(args.input_folder):
for filename in files:
file_path = os.path.join(root, filename)
# Check to see if it's an image
img = cv2.imread(file_path)
# If it is, sort it
if hasattr(img, 'copy'):
if (args.verbose): print('Processing image: ' + file_path)
sort_image_by_color(file_path)
if __name__ == "__main__":
main()