diff --git a/.github/workflows/test_benchmark_collection_models.yml b/.github/workflows/test_benchmark_collection_models.yml index 3e46af8992..201ae88da8 100644 --- a/.github/workflows/test_benchmark_collection_models.yml +++ b/.github/workflows/test_benchmark_collection_models.yml @@ -50,7 +50,7 @@ jobs: run: | pip3 install --user petab[vis] && \ AMICI_PARALLEL_COMPILE="" pip3 install -v --user \ - $(ls -t python/sdist/dist/amici-*.tar.gz | head -1)[petab,test,vis] + $(ls -t python/sdist/dist/amici-*.tar.gz | head -1)[petab,test,vis,jax] - name: Install test dependencies run: | @@ -60,14 +60,27 @@ jobs: - name: Download benchmark collection run: | - git clone --depth 1 https://github.com/benchmarking-initiative/Benchmark-Models-PEtab.git \ - && python3 -m pip install -e Benchmark-Models-PEtab/src/python + pip install git+https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab.git@master#subdirectory=src/python - name: Run tests env: AMICI_PARALLEL_COMPILE: "" run: | - cd tests/benchmark-models && pytest --durations=10 + cd tests/benchmark-models && pytest \ + --durations=10 + --cov=amici \ + --cov-report=xml:"coverage_py.xml" \ + --cov-append \ + + - name: Codecov Python + if: github.event_name == 'pull_request' || github.repository_owner == 'AMICI-dev' + uses: codecov/codecov-action@v4 + with: + token: ${{ secrets.CODECOV_TOKEN }} + file: coverage_py.xml + flags: python + fail_ci_if_error: true + verbose: true # collect & upload results - name: Aggregate results diff --git a/.github/workflows/test_python_cplusplus.yml b/.github/workflows/test_python_cplusplus.yml index c13b7c385b..85e2ee964a 100644 --- a/.github/workflows/test_python_cplusplus.yml +++ b/.github/workflows/test_python_cplusplus.yml @@ -231,11 +231,6 @@ jobs: - name: Install python package run: scripts/installAmiciSource.sh - - name: Install notebook dependencies - run: | - source venv/bin/activate \ - && pip install jax[cpu] - - name: example notebooks run: scripts/runNotebook.sh python/examples/example_*/ diff --git a/.gitignore b/.gitignore index 0faae713ab..e68c2e4f72 100644 --- a/.gitignore +++ b/.gitignore @@ -137,6 +137,8 @@ tests/test/* */tests/explicit_amici/* */tests/fixed_initial_amici/* */tests/localfunc_amici/* +*/tests/conversion/* +*/tests/dimerization/* tests/cpp/writeResults.h5 tests/cpp/writeResults.h5.bak tests/sbml-test-suite/* diff --git a/documentation/ExampleJaxPEtab.ipynb b/documentation/ExampleJaxPEtab.ipynb new file mode 120000 index 0000000000..821b14f21f --- /dev/null +++ b/documentation/ExampleJaxPEtab.ipynb @@ -0,0 +1 @@ +../python/examples/example_jax_petab/ExampleJaxPEtab.ipynb \ No newline at end of file diff --git a/documentation/conf.py b/documentation/conf.py index c86a145f9d..4445c62069 100644 --- a/documentation/conf.py +++ b/documentation/conf.py @@ -206,6 +206,7 @@ def install_doxygen(): "numpy": ("https://numpy.org/devdocs/", None), "sympy": ("https://docs.sympy.org/latest/", None), "python": ("https://docs.python.org/3", None), + "jax": ["https://jax.readthedocs.io/en/latest/", None], } # Add notebooks prolog with binder links diff --git a/documentation/python_examples.rst b/documentation/python_examples.rst index 286ebf3ffd..fd1163690e 100644 --- a/documentation/python_examples.rst +++ b/documentation/python_examples.rst @@ -17,5 +17,6 @@ Various example notebooks. example_errors.ipynb example_large_models/example_performance_optimization.ipynb ExampleJax.ipynb + ExampleJaxPEtab.ipynb ExampleSplines.ipynb ExampleSplinesSwameye2003.ipynb diff --git a/documentation/python_modules.rst b/documentation/python_modules.rst index 2607447f0d..096dd0735f 100644 --- a/documentation/python_modules.rst +++ b/documentation/python_modules.rst @@ -25,6 +25,7 @@ AMICI Python API amici.petab_objective amici.petab_simulate amici.import_utils + amici.jax amici.de_export amici.de_model amici.de_model_components diff --git a/documentation/rtd_requirements.txt b/documentation/rtd_requirements.txt index 05e04bc957..54a35f9f94 100644 --- a/documentation/rtd_requirements.txt +++ b/documentation/rtd_requirements.txt @@ -3,6 +3,8 @@ sphinx<8 mock>=5.0.2 setuptools>=67.7.2 pysb>=1.11.0 +jax>=0.4.26 +diffrax>=0.5.0 matplotlib==3.7.1 nbsphinx==0.9.1 nbformat==5.8.0 diff --git a/python/examples/example_jax_petab/ExampleJaxPEtab.ipynb b/python/examples/example_jax_petab/ExampleJaxPEtab.ipynb new file mode 100644 index 0000000000..10369f74b0 --- /dev/null +++ b/python/examples/example_jax_petab/ExampleJaxPEtab.ipynb @@ -0,0 +1,1162 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d4d2bc5c", + "metadata": {}, + "source": [ + "# Simulating AMICI models using JAX\n", + "\n", + "## Overview\n", + "\n", + "This guide demonstrates how to use AMICI to export models in a format compatible with the [JAX](https://jax.readthedocs.io/en/latest/) ecosystem, enabling simulations with the [diffrax](https://docs.kidger.site/diffrax/) library. " + ] + }, + { + "cell_type": "markdown", + "id": "fb2fe897", + "metadata": {}, + "source": [ + "## Preparation\n", + "\n", + "To begin, we will import a model using [PEtab](https://petab.readthedocs.io). For this demonstration, we will utilize the [Benchmark Collection](https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab), which provides a diverse set of models. For more information on importing PEtab models, refer to the corresponding [PEtab notebook](https://amici.readthedocs.io/en/latest/petab.html).\n", + "\n", + "In this tutorial, we will import the Böhm model from the Benchmark Collection. Using [amici.petab_import](https://amici.readthedocs.io/en/latest/generated/amici.petab_import.html#amici.petab_import.import_petab_problem), we will load the PEtab problem. To create a [JAXModel](https://amici.readthedocs.io/en/latest/generated/amici.jax.html#amici.jax.JAXModel) instead of a standard AMICI model, we set the `jax` parameter to `True`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6ada3fb8", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:53.712145Z", + "start_time": "2024-11-19T09:50:47.191184Z" + } + }, + "outputs": [], + "source": [ + "from amici.petab.petab_import import import_petab_problem\n", + "import petab.v1 as petab\n", + "\n", + "# Define the model name and YAML file location\n", + "model_name = \"Boehm_JProteomeRes2014\"\n", + "yaml_url = (\n", + " f\"https://raw.githubusercontent.com/Benchmarking-Initiative/Benchmark-Models-PEtab/\"\n", + " f\"master/Benchmark-Models/{model_name}/{model_name}.yaml\"\n", + ")\n", + "\n", + "# Load the PEtab problem from the YAML file\n", + "petab_problem = petab.Problem.from_yaml(yaml_url)\n", + "\n", + "# Import the PEtab problem as a JAX-compatible AMICI model\n", + "jax_model = import_petab_problem(\n", + " petab_problem,\n", + " compile_=True, # do not compile regular amici model\n", + " verbose=False, # no text output\n", + " jax=True, # return jax model\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "5258566d99c89ba4", + "metadata": {}, + "source": [ + "## Simulation\n", + "\n", + "In principle, we can already use this model for simulation using the [simulate_condition](https://amici.readthedocs.io/en/latest/generated/amici.jax.html#amici.jax.JAXModel.simulate_condition) method. However, this approach can be cumbersome as timepoints, data etc. need to be specified manually. Instead, we process the PEtab problem into a [JAXProblem](https://amici.readthedocs.io/en/latest/generated/amici.jax.html#amici.jax.JAXProblem), which enables efficient simulation using [amici.jax.run_simulations]((https://amici.readthedocs.io/en/latest/generated/amici.jax.html#amici.jax.run_simulations)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76c1331372cd51b4", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:56.042924Z", + "start_time": "2024-11-19T09:50:53.718372Z" + } + }, + "outputs": [], + "source": [ + "from amici.jax import JAXProblem, run_simulations\n", + "\n", + "# Create a JAXProblem from the JAX model and PEtab problem\n", + "jax_problem = JAXProblem(jax_model, petab_problem)\n", + "\n", + "# Run simulations and compute the log-likelihood\n", + "llh, results = run_simulations(jax_problem)" + ] + }, + { + "cell_type": "markdown", + "id": "5f8684d76368bd76", + "metadata": {}, + "source": "This simulates the model for all conditions using the nominal parameter values. Simple, right? Now, let’s take a look at the simulation results." + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2fc284bd3bfb3a62", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:56.141898Z", + "start_time": "2024-11-19T09:50:56.134945Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(Array(nan, dtype=float32),\n", + " {'stats_dyn': {'max_steps': 1024,\n", + " 'num_accepted_steps': Array(778, dtype=int32, weak_type=True),\n", + " 'num_rejected_steps': Array(246, dtype=int32, weak_type=True),\n", + " 'num_steps': Array(1024, dtype=int32, weak_type=True)},\n", + " 'stats_posteq': None,\n", + " 'stats_preeq': None,\n", + " 'ts': Array([ 0. , 0. , 0. , 2.5, 2.5, 2.5, 5. , 5. , 5. ,\n", + " 10. , 10. , 10. , 15. , 15. , 15. , 20. , 20. , 20. ,\n", + " 30. , 30. , 30. , 40. , 40. , 40. , 50. , 50. , 50. ,\n", + " 60. , 60. , 60. , 80. , 80. , 80. , 100. , 100. , 100. ,\n", + " 120. , 120. , 120. , 160. , 160. , 160. , 200. , 200. , 200. ,\n", + " 240. , 240. , 240. ], dtype=float32),\n", + " 'x': Array([[143.8668, 63.7332, 0. , 0. , 0. , 0. ,\n", + " 0. , 0. ],\n", + " [143.8668, 63.7332, 0. , 0. , 0. , 0. ,\n", + " 0. , 0. ],\n", + " [143.8668, 63.7332, 0. , 0. , 0. , 0. ,\n", + " 0. , 0. ],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf],\n", + " [ inf, inf, inf, inf, inf, inf,\n", + " inf, inf]], dtype=float32)})" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the simulation condition\n", + "simulation_condition = (\"model1_data1\",)\n", + "\n", + "# Access the results for the specified condition\n", + "results[simulation_condition]" + ] + }, + { + "cell_type": "markdown", + "id": "aa46125e508d38d3", + "metadata": {}, + "source": [ + "Unfortunately, the simulation failed! As seen in the output, the simulation broke down after the initial timepoint, indicated by the `inf` values in the state variables `results[simulation_condition][1].x` and the `nan` likelihood value. A closer inspection of this variable provides additional clues about what might have gone wrong.\n", + "\n", + "The issue stems from using single precision, as indicated by the `float32` dtype of state variables. Single precision is generally a [bad idea](https://docs.kidger.site/diffrax/examples/stiff_ode/) for stiff systems like the Böhm model. Let’s retry the simulation with double precision." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8e5006774534ba3a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:58.227222Z", + "start_time": "2024-11-19T09:50:56.235939Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{('model1_data1',): (Array(-138.22199834, dtype=float64),\n", + " {'stats_dyn': {'max_steps': 1024,\n", + " 'num_accepted_steps': Array(125, dtype=int64, weak_type=True),\n", + " 'num_rejected_steps': Array(7, dtype=int64, weak_type=True),\n", + " 'num_steps': Array(132, dtype=int64, weak_type=True)},\n", + " 'stats_posteq': None,\n", + " 'stats_preeq': None,\n", + " 'ts': Array([ 0. , 0. , 0. , 2.5, 2.5, 2.5, 5. , 5. , 5. ,\n", + " 10. , 10. , 10. , 15. , 15. , 15. , 20. , 20. , 20. ,\n", + " 30. , 30. , 30. , 40. , 40. , 40. , 50. , 50. , 50. ,\n", + " 60. , 60. , 60. , 80. , 80. , 80. , 100. , 100. , 100. ,\n", + " 120. , 120. , 120. , 160. , 160. , 160. , 200. , 200. , 200. ,\n", + " 240. , 240. , 240. ], dtype=float64),\n", + " 'x': Array([[1.43866806e+02, 6.37332001e+01, 0.00000000e+00, 0.00000000e+00,\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " [1.43866806e+02, 6.37332001e+01, 0.00000000e+00, 0.00000000e+00,\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " [1.43866806e+02, 6.37332001e+01, 0.00000000e+00, 0.00000000e+00,\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " [5.34614747e+01, 2.88662915e+01, 1.73038463e+01, 5.38666098e-05,\n", + " 1.57043241e-05, 1.12989551e+02, 1.44740461e+00, 2.65965680e+01],\n", + " [5.34614747e+01, 2.88662915e+01, 1.73038463e+01, 5.38666098e-05,\n", + " 1.57043241e-05, 1.12989551e+02, 1.44740461e+00, 2.65965680e+01],\n", + " [5.34614747e+01, 2.88662915e+01, 1.73038463e+01, 5.38666098e-05,\n", + " 1.57043241e-05, 1.12989551e+02, 1.44740461e+00, 2.65965680e+01],\n", + " [3.40645243e+01, 1.96396741e+01, 2.10101056e+01, 2.04431389e-05,\n", + " 6.79533169e-06, 1.36155797e+02, 3.93060446e+00, 3.39422194e+01],\n", + " [3.40645243e+01, 1.96396741e+01, 2.10101056e+01, 2.04431389e-05,\n", + " 6.79533169e-06, 1.36155797e+02, 3.93060446e+00, 3.39422194e+01],\n", + " [3.40645243e+01, 1.96396741e+01, 2.10101056e+01, 2.04431389e-05,\n", + " 6.79533169e-06, 1.36155797e+02, 3.93060446e+00, 3.39422194e+01],\n", + " [2.17740069e+01, 1.28936829e+01, 2.26400305e+01, 7.29828626e-06,\n", + " 2.55916689e-06, 1.49922977e+02, 9.56261350e+00, 3.90845534e+01],\n", + " [2.17740069e+01, 1.28936829e+01, 2.26400305e+01, 7.29828626e-06,\n", + " 2.55916689e-06, 1.49922977e+02, 9.56261350e+00, 3.90845534e+01],\n", + " [2.17740069e+01, 1.28936829e+01, 2.26400305e+01, 7.29828626e-06,\n", + " 2.55916689e-06, 1.49922977e+02, 9.56261350e+00, 3.90845534e+01],\n", + " [1.78289538e+01, 1.02603483e+01, 2.23703281e+01, 4.27571773e-06,\n", + " 1.41605997e-06, 1.53605377e+02, 1.53104054e+01, 4.07264964e+01],\n", + " [1.78289538e+01, 1.02603483e+01, 2.23703281e+01, 4.27571773e-06,\n", + " 1.41605997e-06, 1.53605377e+02, 1.53104054e+01, 4.07264964e+01],\n", + " [1.78289538e+01, 1.02603483e+01, 2.23703281e+01, 4.27571773e-06,\n", + " 1.41605997e-06, 1.53605377e+02, 1.53104054e+01, 4.07264964e+01],\n", + " [1.63397301e+01, 8.95194886e+00, 2.15687556e+01, 3.13802765e-06,\n", + " 9.41897178e-07, 1.54369347e+02, 2.09093940e+01, 4.12091821e+01],\n", + " [1.63397301e+01, 8.95194886e+00, 2.15687556e+01, 3.13802765e-06,\n", + " 9.41897178e-07, 1.54369347e+02, 2.09093940e+01, 4.12091821e+01],\n", + " [1.63397301e+01, 8.95194886e+00, 2.15687556e+01, 3.13802765e-06,\n", + " 9.41897178e-07, 1.54369347e+02, 2.09093940e+01, 4.12091821e+01],\n", + " [1.59598663e+01, 7.84978463e+00, 1.95400559e+01, 2.28580865e-06,\n", + " 5.52965361e-07, 1.52878988e+02, 3.13834269e+01, 4.08423997e+01],\n", + " [1.59598663e+01, 7.84978463e+00, 1.95400559e+01, 2.28580865e-06,\n", + " 5.52965361e-07, 1.52878988e+02, 3.13834269e+01, 4.08423997e+01],\n", + " [1.59598663e+01, 7.84978463e+00, 1.95400559e+01, 2.28580865e-06,\n", + " 5.52965361e-07, 1.52878988e+02, 3.13834269e+01, 4.08423997e+01],\n", + " [1.68960409e+01, 7.57954992e+00, 1.74766781e+01, 1.95598628e-06,\n", + " 3.93623013e-07, 1.49923893e+02, 4.08004734e+01, 3.97639408e+01],\n", + " [1.68960409e+01, 7.57954992e+00, 1.74766781e+01, 1.95598628e-06,\n", + " 3.93623013e-07, 1.49923893e+02, 4.08004734e+01, 3.97639408e+01],\n", + " [1.68960409e+01, 7.57954992e+00, 1.74766781e+01, 1.95598628e-06,\n", + " 3.93623013e-07, 1.49923893e+02, 4.08004734e+01, 3.97639408e+01],\n", + " [1.83667585e+01, 7.66955396e+00, 1.55594015e+01, 1.76473276e-06,\n", + " 3.07719966e-07, 1.46418868e+02, 4.91998176e+01, 3.84066930e+01],\n", + " [1.83667585e+01, 7.66955396e+00, 1.55594015e+01, 1.76473276e-06,\n", + " 3.07719966e-07, 1.46418868e+02, 4.91998176e+01, 3.84066930e+01],\n", + " [1.83667585e+01, 7.66955396e+00, 1.55594015e+01, 1.76473276e-06,\n", + " 3.07719966e-07, 1.46418868e+02, 4.91998176e+01, 3.84066930e+01],\n", + " [2.01288255e+01, 7.95104827e+00, 1.38272785e+01, 1.61833093e-06,\n", + " 2.52512177e-07, 1.42637837e+02, 5.66687226e+01, 3.69287741e+01],\n", + " [2.01288255e+01, 7.95104827e+00, 1.38272785e+01, 1.61833093e-06,\n", + " 2.52512177e-07, 1.42637837e+02, 5.66687226e+01, 3.69287741e+01],\n", + " [2.01288255e+01, 7.95104827e+00, 1.38272785e+01, 1.61833093e-06,\n", + " 2.52512177e-07, 1.42637837e+02, 5.66687226e+01, 3.69287741e+01],\n", + " [2.42069672e+01, 8.82343809e+00, 1.09015504e+01, 1.36440625e-06,\n", + " 1.81275253e-07, 1.34584160e+02, 6.91907904e+01, 3.38618223e+01],\n", + " [2.42069672e+01, 8.82343809e+00, 1.09015504e+01, 1.36440625e-06,\n", + " 1.81275253e-07, 1.34584160e+02, 6.91907904e+01, 3.38618223e+01],\n", + " [2.42069672e+01, 8.82343809e+00, 1.09015504e+01, 1.36440625e-06,\n", + " 1.81275253e-07, 1.34584160e+02, 6.91907904e+01, 3.38618223e+01],\n", + " [2.88236929e+01, 9.92100237e+00, 8.58815552e+00, 1.12770626e-06,\n", + " 1.33599425e-07, 1.26069389e+02, 7.90544164e+01, 3.08213014e+01],\n", + " [2.88236929e+01, 9.92100237e+00, 8.58815552e+00, 1.12770626e-06,\n", + " 1.33599425e-07, 1.26069389e+02, 7.90544164e+01, 3.08213014e+01],\n", + " [2.88236929e+01, 9.92100237e+00, 8.58815552e+00, 1.12770626e-06,\n", + " 1.33599425e-07, 1.26069389e+02, 7.90544164e+01, 3.08213014e+01],\n", + " [3.38427746e+01, 1.11365012e+01, 6.75633027e+00, 9.06279023e-07,\n", + " 9.81352036e-08, 1.17230823e+02, 8.68156402e+01, 2.78994196e+01],\n", + " [3.38427746e+01, 1.11365012e+01, 6.75633027e+00, 9.06279023e-07,\n", + " 9.81352036e-08, 1.17230823e+02, 8.68156402e+01, 2.78994196e+01],\n", + " [3.38427746e+01, 1.11365012e+01, 6.75633027e+00, 9.06279023e-07,\n", + " 9.81352036e-08, 1.17230823e+02, 8.68156402e+01, 2.78994196e+01],\n", + " [4.45767678e+01, 1.36929100e+01, 4.13936161e+00, 5.34332520e-07,\n", + " 5.04178629e-08, 9.91750041e+01, 9.76743159e+01, 2.25642862e+01],\n", + " [4.45767678e+01, 1.36929100e+01, 4.13936161e+00, 5.34332520e-07,\n", + " 5.04178629e-08, 9.91750041e+01, 9.76743159e+01, 2.25642862e+01],\n", + " [4.45767678e+01, 1.36929100e+01, 4.13936161e+00, 5.34332520e-07,\n", + " 5.04178629e-08, 9.91750041e+01, 9.76743159e+01, 2.25642862e+01],\n", + " [5.53512751e+01, 1.61684905e+01, 2.47997315e+00, 2.79973425e-07,\n", + " 2.38894456e-08, 8.17101310e+01, 1.04245916e+02, 1.80088542e+01],\n", + " [5.53512751e+01, 1.61684905e+01, 2.47997315e+00, 2.79973425e-07,\n", + " 2.38894456e-08, 8.17101310e+01, 1.04245916e+02, 1.80088542e+01],\n", + " [5.53512751e+01, 1.61684905e+01, 2.47997315e+00, 2.79973425e-07,\n", + " 2.38894456e-08, 8.17101310e+01, 1.04245916e+02, 1.80088542e+01],\n", + " [6.52754860e+01, 1.83796881e+01, 1.44531833e+00, 1.32320205e-07,\n", + " 1.04906457e-08, 6.59469727e+01, 1.08115837e+02, 1.42437160e+01],\n", + " [6.52754860e+01, 1.83796881e+01, 1.44531833e+00, 1.32320205e-07,\n", + " 1.04906457e-08, 6.59469727e+01, 1.08115837e+02, 1.42437160e+01],\n", + " [6.52754860e+01, 1.83796881e+01, 1.44531833e+00, 1.32320205e-07,\n", + " 1.04906457e-08, 6.59469727e+01, 1.08115837e+02, 1.42437160e+01]], dtype=float64)})}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import jax\n", + "\n", + "# Enable double precision in JAX\n", + "jax.config.update(\"jax_enable_x64\", True)\n", + "\n", + "# Re-run simulations with double precision\n", + "llh, results = run_simulations(jax_problem)\n", + "\n", + "results" + ] + }, + { + "cell_type": "markdown", + "id": "fea37568206351f7", + "metadata": {}, + "source": "Success! The simulation completed successfully, and we can now plot the resulting state trajectories." + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "95c75d098d3a1822", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:58.490052Z", + "start_time": "2024-11-19T09:50:58.305876Z" + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAIjCAYAAAAN/63DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+cUlEQVR4nOzdd1iTZ/fA8W8We4migAouREERRWW4cO9tHa1trVa7tO1rWzut47W1te1bW7Xtr4qzdVTrqKPuraCC4t6CE9yIyApJfn8gKSmooEAY53NdXJInT57nJA+B451zn1thMBgMCCGEEEIIUUYozR2AEEIIIYQQRUkSYCGEEEIIUaZIAiyEEEIIIcoUSYCFEEIIIUSZIgmwEEIIIYQoUyQBFkIIIYQQZYokwEIIIYQQokyRBFgIIYQQQpQpkgALIYQQQogyRRJgIUSJN2XKFOrUqYNerzd3KLmKjY1FoVAwd+7cfD92+/btKBQKtm/fXuBxPU5oaCihoaFFes7CFBQUxJgxY8wdhhCimJAEWAhRoiUmJvL111/z4YcfolRm/kp72mSzpDh9+jT/+c9/CAkJwcrKCoVCQWxsrLnDAiA5OZnx48c/U8KelJTEuHHj6NSpE87Ozo+9nqGhoQwZMuSJx/zwww+ZMWMG8fHxTx2XEKL0kARYCFGizZ49m4yMDAYNGmTuUIpMeHg4P/74I/fv36du3brmDsdEcnIyEyZMeKYE+NatW0ycOJGTJ0/SoEGDAomrZ8+eODg48NNPPxXI8YQQJZskwEKIEm3OnDn06NEDKysrc4dSZHr06EFCQgJHjx7lhRdeMHc4Bc7NzY24uDguXrzIN998UyDHVCqV9OvXj/nz52MwGArkmEKIkksSYCFEiRUTE8ORI0do167dY/cbP348CoWCM2fOMHjwYBwdHXFxcWHs2LEYDAYuX75sHCF0dXXlu+++y3GMGzduMGzYMCpVqoSVlRUNGjRg3rx5OfZLSEhgyJAhODo64uTkxMsvv0xCQkKucZ06dYp+/frh7OyMlZUVjRs35q+//nri83Z2dsbe3v6J++XVr7/+Ss2aNbG2tqZp06bs2rUrxz7p6el8/vnnBAQE4OjoiK2tLS1atGDbtm3GfWJjY3FxcQFgwoQJKBQKFAoF48ePB+DIkSMMGTKEGjVqYGVlhaurK0OHDuX27dsm57K0tMTV1bXAnl+W9u3bc/HiRaKjowv82EKIkkUSYCFEibV3714AGjVqlKf9BwwYgF6v56uvviIwMJBJkyYxdepU2rdvT+XKlfn666+pVasW77//Pjt37jQ+LiUlhdDQUBYsWMALL7zAN998g6OjI0OGDOGHH34w7mcwGOjZsycLFixg8ODBTJo0iStXrvDyyy/niOX48eMEBQVx8uRJPvroI7777jtsbW3p1asXK1aseMZXJu/CwsJ47bXXcHV1ZcqUKTRr1owePXpw+fJlk/0SExOZNWsWoaGhfP3114wfP56bN2/SsWNHY0Lp4uLCzz//DEDv3r1ZsGABCxYsoE+fPgBs2rSJCxcu8MorrzBt2jQGDhzI4sWL6dKlS5GMygYEBACwZ8+eQj+XEKKYMwghRAn12WefGQDD/fv3H7vfuHHjDIBhxIgRxm0ZGRmGKlWqGBQKheGrr74ybr97967B2tra8PLLLxu3TZ061QAYfvvtN+O29PR0Q3BwsMHOzs6QmJhoMBgMhpUrVxoAw5QpU0zO06JFCwNgmDNnjnF727ZtDfXr1zekpqYat+n1ekNISIjBy8vLuG3btm0GwLBt27Zcn9s333xjAAwxMTGPfQ1yk56ebqhYsaLB39/fkJaWZtz+66+/GgBDq1atTJ5H9n0MhszXqlKlSoahQ4cat928edMAGMaNG5fjfMnJyTm2LVq0yAAYdu7cmWuMBw4cyPHaPQsLCwvDG2+8USDHEkKUXDICLIQosW7fvo1arcbOzi5P+7/66qvG71UqFY0bN8ZgMDBs2DDjdicnJ7y9vblw4YJx27p163B1dTWZaKfRaHj77bdJSkpix44dxv3UajVvvPGGyXlGjRplEsedO3fYunUr/fv35/79+9y6dYtbt25x+/ZtOnbsyNmzZ7l69Wr+XoynEBkZyY0bN3j99dexsLAwbs8q4chOpVIZ99Hr9dy5c4eMjAwaN27MwYMH83Q+a2tr4/epqancunWLoKAggDwf41mVK1eOW7duFcm5hBDFl9rcAQghRFHx8PAwue3o6IiVlRUVKlTIsT17XerFixfx8vIytlnLktWB4eLFi8Z/3dzcciTk3t7eJrfPnTuHwWBg7NixjB07NtdYb9y4QeXKlfPx7PIvK24vLy+T7RqNhho1auTYf968eXz33XecOnUKrVZr3F69evU8ne/OnTtMmDCBxYsXc+PGDZP77t27l9/wn4rBYEChUBTJuYQQxZckwEKIEqt8+fJkZGRw//79PE0KU6lUedoGFGpNataCHe+//z4dO3bMdZ9atWoV2vmfxm+//caQIUPo1asXH3zwARUrVkSlUjF58mTOnz+fp2P079+fvXv38sEHH+Dv74+dnR16vZ5OnToV2SImCQkJOf7DI4QoeyQBFkKUWHXq1AEyu0H4+fkV2nk8PT05cuQIer3eZBT41KlTxvuz/t2yZQtJSUkmo8CnT582OV7W6KpGo3liB4vClBX32bNnadOmjXG7VqslJibGpAfvsmXLqFGjBsuXLzcZQR03bpzJMR81unr37l22bNnChAkT+Pzzz43bz549WyDPJS+uXr1Kenp6seudLIQoelIDLIQosYKDg4HMWtbC1KVLF+Lj41myZIlxW0ZGBtOmTcPOzo5WrVoZ98vIyDB2QgDQ6XRMmzbN5HgVK1YkNDSU//u//yMuLi7H+W7evFlIz8RU48aNcXFx4ZdffiE9Pd24fe7cuTlat2WNlGcfGd+3bx/h4eEm+9nY2ADk6fEAU6dOfZankC9RUVEAhISEFNk5hRDFk4wACyFKrBo1alCvXj02b97M0KFDC+08I0aM4P/+7/8YMmQIUVFRVKtWjWXLlrFnzx6mTp1qLL/o3r07zZo146OPPiI2NhYfHx+WL1+ea33rjBkzaN68OfXr12f48OHUqFGD69evEx4ezpUrVzh8+PAj47l3754xqc5q6TV9+nScnJxwcnJi5MiReXpeGo2GSZMm8dprr9GmTRsGDBhATEwMc+bMyVED3K1bN5YvX07v3r3p2rUrMTEx/PLLL/j4+JCUlGTcz9raGh8fH5YsWULt2rVxdnamXr161KtXj5YtWzJlyhS0Wi2VK1dm48aNxMTE5Brb9OnTSUhI4Nq1awCsXr2aK1euADBq1Kgck/SyCw0NZceOHTmS7U2bNuHh4UHDhg3z9PoIIUoxM3agEEKIZ/a///3PYGdnl2uLrSxZbdBu3rxpsv3ll1822Nra5ti/VatWBl9fX5Nt169fN7zyyiuGChUqGCwsLAz169fPtTXX7du3DS+++KLBwcHB4OjoaHjxxRcNhw4dyrWV1/nz5w0vvfSSwdXV1aDRaAyVK1c2dOvWzbBs2TLjPrm1QYuJiTEAuX55eno++sV6hJ9++slQvXp1g6WlpaFx48aGnTt3Glq1amXSBk2v1xu+/PJLg6enp8HS0tLQsGFDw5o1awwvv/xyjnPu3bvXEBAQYLCwsDBpiXblyhVD7969DU5OTgZHR0fDc889Z7h27VqubdM8PT0f+Ryf1PItICDA4OrqarJNp9MZ3NzcDJ999lm+Xx8hROmjMBhkTUghRMl17949atSowZQpU0zamYmy6f79+zg7OzN16lTeeust4/aVK1fy/PPPc/78edzc3MwYoRCiOJAaYCFEiebo6MiYMWP45ptviqyTgCi+du7cSeXKlRk+fLjJ9q+//pqRI0dK8iuEAEBGgIUQohS6c+eOycS2f1OpVLi4uBRhREIIUXxIAiyEEKVQ1kSwR/H09CQ2NrboAhJCiGJEEmAhhCiFoqKiuHv37iPvt7a2plmzZkUYkRBCFB+SAAshhBBCiDJFJsEJIYQQQogyRRbCAPR6PdeuXcPe3v6Ry3gKIYQQQgjzMRgM3L9/H3d3d5Nl6Z+GJMDAtWvXqFq1qrnDEEIIIYQQT3D58mWqVKnyTMeQBBiMy5hevnwZBweHQj+fVqtl48aNdOjQAY1GU+jnE4VPrmnpJNe19JFrWjrJdS19crumiYmJVK1a1Zi3PQuzJsA7d+7km2++ISoqiri4OFasWEGvXr1M9jl58iQffvghO3bsICMjAx8fH/788088PDwASE1N5b333mPx4sWkpaXRsWNHfvrpJypVqpTnOLLKHhwcHIosAbaxscHBwUHeqKWEXNPSSa5r6SPXtHSS61r6PO6aFkS5qlknwT148IAGDRowY8aMXO8/f/48zZs3p06dOmzfvp0jR44wduxYrKysjPv85z//YfXq1SxdupQdO3Zw7do1+vTpU1RPQQghhBBClDBmHQHu3LkznTt3fuT9n376KV26dGHKlCnGbTVr1jR+f+/ePcLCwli4cCFt2rQBYM6cOdStW5eIiAiCgoJyPW5aWhppaWnG24mJiUDm/za0Wu0zPae8yDpHUZxLFA25pqWTXNfSR65p6STXtfTJ7ZoW5PUtNn2AFQqFSQmEXq/H0dGRMWPGsHv3bg4dOkT16tX5+OOPjfts3bqVtm3bcvfuXZycnIzH8vT05N133+U///lPrucaP348EyZMyLF94cKF2NjYFPRTE0IIIYQQzyg5OZnnn3+ee/fuPXPJarGdBHfjxg2SkpL46quvmDRpEl9//TXr16+nT58+bNu2jVatWhEfH4+FhYVJ8gtQqVIl4uPjH3nsjz/+mNGjRxtvZxVVd+jQochqgDdt2kT79u2lVqmUkGtaOsl1LX3kmpZOuV1XnU5HRkYGxWScTzyBQqFApVKhUqlQKBS5XtOsT+wLQrFNgPV6PQA9e/Y0juT6+/uzd+9efvnlF1q1avXUx7a0tMTS0jLHdo1GU6S/EIv6fKLwyTUtneS6lj5yTUunrOualJTElStXJPktgWxsbHBzczO+P7O/VwvyPVtsE+AKFSqgVqvx8fEx2V63bl12794NgKurK+np6SQkJJiMAl+/fh1XV9eiDFcIIYQQxYBOp+PKlSvY2Njg4uIiC1yVEAaDgfT0dG7evElMTAzVqlUr1PMV2wTYwsKCJk2acPr0aZPtZ86cwdPTE4CAgAA0Gg1btmyhb9++AJw+fZpLly4RHBxc5DELIYQQwry0Wi0GgwEXFxesra3NHY7IB2trazQaDRcvXiz0CY1mTYCTkpI4d+6c8XZMTAzR0dE4Ozvj4eHBBx98wIABA2jZsiWtW7dm/fr1rF69mu3btwPg6OjIsGHDGD16NM7Ozjg4ODBq1CiCg4Mf2QFCCCGEEKWfjPyWTFlLHBd2+YpZE+DIyEhat25tvJ01Me3ll19m7ty59O7dm19++YXJkyfz9ttv4+3tzZ9//knz5s2Nj/n+++9RKpX07dvXZCEMIYQQQgghcmPWBDg0NPSJGf7QoUMZOnToI++3srJixowZj1xMQwghhBBCiOzMuhKcEEIIIYQQRU0SYCGEEEKIYuDmzZu88cYbeHh4YGlpiaurKx07duSLL75AoVA89itrftSVK1ewsLCgXr16xuOOHz/+iY9/1H516tTJNdbJkyejUqn45ptvCv11KQySAAshhBBCFAN9+/bl0KFDzJs3jzNnzvDXX38RGhpK/fr1iYuLM37179+fTp06mWwLCQkBYO7cufTv35/ExET27dsHwPvvv2+yb5UqVZg4caLJtiy+vr4m27Naz/7b7NmzGTNmDLNnzy78F6YQFNs2aEIIIYQQz8pgMJCi1Znl3NYaVZ67USQkJLBr1y62b99uXOzL09OTpk2b5jyutTVpaWk51jwwGAzMmTOHn376iSpVqhAWFkZgYCB2dnbY2dkZ91OpVNjb2+e6ZoJarX7iWgo7duwgJSWFiRMnMn/+fPbu3WtMwEsKSYCFEEIIUWqlaHX4fL7BLOc+MbEjNhZ5S7WyktSVK1cSFBSU64q1T7Jt2zaSk5Np164dlStXJiQkhO+//x5bW9s8H+Ps2bO4u7tjZWVFcHAwkydPxsPDw2SfsLAwBg0ahEajYdCgQYSFhZW4BFhKIIQQQgghzEytVjN37lzmzZuHk5MTzZo145NPPuHIkSN5PkZYWBgDBw5EpVJRr149atSowdKlS/P8+MDAQObOncv69ev5+eefiYmJoUWLFty/f9+4T2JiIsuWLWPw4MEADB48mD/++IOkpKS8P9liQEaARZ4l30vg1uWLKFUqKlSthlW2j1OEEEKI4shao+LExI5mO3d+9O3bl65du7Jr1y4iIiL4+++/mTJlCrNmzWLIkCGPfWxCQgLLly83qdkdPHgwYWFhT3xsls6dOxu/9/PzIzAwEE9PT/744w+GDRsGwKJFi6hZsyYNGjQAwN/fH09PT5YsWWLcpySQBFjkoE1L5faVy9y6FMvNS7HcuhTLrcsXSb6XYLKfXTlnKnhUo3xVTyo8/CpfpSoaSyvzBC6EEEL8i0KhyHMZQnFgZWVF+/btad++PWPHjuXVV19l3LhxT0xiFy5cSGpqKoGBgcZtBoMBvV7PmTNnqF27dr5jcXJyonbt2iar9oaFhXH8+HHU6n9eU71ez+zZsyUBFiVHWnIyl45Fc/NiLLcux3Lr0kXuxl+D3BYoUShwquiKTpfB/Vs3Sbp7h6S7d4g9fNB0n0qu/yTED/8t51YZlVp+3IQQQoj88PHxYeXKlU/cLywsjPfeey9Hovzmm28ye/Zsvvrqq3yfOykpifPnz/Piiy8CcPToUSIjI9m+fTvOzs7G/e7cuUNoaCinTp16ZNu04kYykjLsRuwFVkyZSNLtWznus7Z3oIJHNVw8qlHBoxoVPDypUMUTjVXm6G5a8gNuX7nErcsXuXXp4sN/Y0m5n0hCfBwJ8XGcOxBhPJ5Spca5chWTxNjFwxOHChVRKKUUXQghRNl2+/ZtnnvuOYYOHYqfnx/29vZERkYyZcoUevbs+djHRkdHc/DgQX7//fccCeigQYOYOHEikyZNMhm1zc37779P9+7d8fT05Nq1a4wbNw6VSsWgQYOAzCS7adOmtGzZMsdjmzRpQlhYWInpCywJcBl14eAB1vwwBW1qCvblXfCo55eZnHpUw8WzOjaOTo9t3WJpY4t77bq4165rsj2rTjgrIc78/hLa1JTM25diTfbXWFpRvqqHMTF28axO5To+qNSawnjaQgghRLFkZ2dHYGAg33//PefPn0er1VK1alWGDx/OJ5988tjHhoWF4ePjk+voa+/evRk5ciTr1q2jR48ejz3OlStXGDRoELdv38bFxYXmzZsTERGBi4sL6enp/Pbbb3z44Ye5PrZv37589913fPnll2g0xf9vuCTAZdDBv1ezfd5MDAY9HvX86P6fTwpsQpuNoxMejk541Gtg3GYwGLh/62aOxPjO1cto01KJP3eG+HNnjPtb2dpRq2kI3iEt8PD1Q6nK3yQCIYQQoqSxtLRk8uTJTJ48+Yn7zp071+T2tGnTHrmvq6srOp1pH+TY2Nhc9128ePEjj2NhYcGtWzk/Mc4yZswYxowZ88j7ixtJgMsQvU7Htnkzid6wBoB6rTvQ7tU3C702V6FQ4OBSEQeXitRo1MQknrvx17htTIwvcu3MSR4k3OXYto0c27YRawdHagc2o05ISyrX8ZFyCSGEEEI8M0mAy4j0lGTW/DCFmEORALR4fghNevTN8wo1hUGpUlG+clXKV65K7aDmAOj1Oq6ePM7p8F2cidhDSuI9Dm9ax+FN67BzLk/toObUCWmJa63aZo1dCCGEECWXJMBlQOKtm6z8egI3L8WitrCky8j38Aosniu2KJUqqvr6UdXXj9ZDXuPyscOcCt/Fuf3hJN25zcF1qzi4bhUOLpXwDmlBnZCWuHhWl2RYCCGEEHkmCXApF3/+LCunTORBwl1sncrR64OxuNbKfy9Ac1Cp1VTzD6CafwAZr77FxSMHObVnJ+cj95F48zoHVi3jwKpllHOrjHdIS+qEtKB8FY8nH1gIIYQQZZokwKXY2QPhrPvxWzLS06jgUY3eH36OQ4WK5g7rqag1GmoGBFIzIBBtWioxhyI5tXcnMQcjuRt3lYg/FxHx5yIqeFSjTkhLvINb4OTqZu6whRBCCFEMSQJcChkMBiLXrGDn73PAYKCafwDd3vkQSxsbc4dWIDSWVtQOak7toOakpyRzPnIfp/buJPbwIW5dimX3pVh2L55PpRpe1AlpQe3gFjhUcDF32EIIIYQoJiQBLmV0GRlsnf0LR7asB6BBh660GTKi1LYSs7C2oW6L1tRt0ZrUpCTOHtjL6b27uHTsMNcvnOX6hbPs+G027t4+eAe3wDu4ObZO5cwdthBCCCHMSBLgUiZi+ZLM5FehoPVLr9Kwc48yM0HMys6O+q07UL91B5LvJXBm315O793JlVPHuXb6BNdOn2DHgjBqNQ2mQbvOVPWtX2ZeGyGEEEL8QxLgUsRgMHBy9zYA2r/6Fn7tOpk5IvOxcXTCv0MX/Dt04f6dW5wJ38OpPduJP3+WM+G7OBO+i3JulWnQvjM+rdpibWdv7pCFEEIIUUQkAS5Fbl2K5d71eNQaC+o2DzV3OMWGvXMFArr2JKBrT27EXuDI5r85sWs7d+Ousn3+LHYtmod3cAsatO+Mm1cdGRUWQgghSjlZVqsUOXcgAgAPP380VlZmjqZ4qlitBu1efYvXf5lHu1ffwsWzOjqtlhM7t7Jo7AcsGDOK6I3rSEtONneoQgghypibN2/yxhtv4OHhgaWlJa6urnTs2JEvvvgChULx2K/t27cDcOXKFSwsLKhXr57xuOPHj3/i4x+1X506dUxirFatmvE+lUqFu7s7w4YN4+7du0X2OhUEGQEuRbISYK8mwWaOpPizsLahQfvO+LXrRPy5Mxze9Den9+7k5qVYtoT9xM7fZlO3eSh+7TtTqXpNc4crhBCiDOjbty/p6enMmzePGjVqcP36dbZs2YKvry9xcXHG/d555x0SExOZM2eOcZuzszMAc+fOpX///uzcuZN9+/YRGBjI+++/z+uvv27ct0mTJowYMYLhw4fniMHX15fNmzcbb6vVOVPFiRMnMnz4cHQ6HWfOnGHEiBG8/fbbLFiwoEBeh6IgCXApkXjzBjdiz6NQKKkR0NTc4ZQYCoUCNy9v3Ly8CX3pVU7s2srhTX9z5+pljmxZz5Et63GtVZsG7TrjHdICjaWMrAshRIliMIDWTJ/qaWwgj2V1CQkJ7Nq1i+3bt9OqVSsAPD09ado05990a2tr0tLScHV1NdluMBiYM2cOP/30E1WqVCEsLIzAwEDs7Oyws7Mz7qdSqbC3t8/xeMhMeHPbnl32x1auXJmXX36ZRYsW5el5FheSAJcS5w6EA1C5jg82Do5mjqZksrKzo1HnHjTs1J2rJ48TvWkdZ/ftJf7cGeLPnWH7/Fn4tGpDg3adZcU5IYQoKbTJ8KW7ec79yTWwsM3TrllJ6sqVKwkKCsLS0jLfp9u2bRvJycm0a9eOypUrExISwvfff4+tbd5iADh79izu7u5YWVkRHBzM5MmT8fB49N+8q1evsnr1agIDA/MdrzlJDXApkVX+UKtJkJkjKfkUCgVVfOrR7Z0xvPbzXFo8PwTHSq6kJT/g0N+rmfvemywZ/xEn9+wgQ6s1d7hCCCFKAbVazdy5c5k3bx5OTk40a9aMTz75hCNHjuT5GGFhYQwcOBCVSkW9evWoUaMGS5cuzfPjAwMDmTt3LuvXr+fnn38mJiaGFi1acP/+fZP9PvzwQ+zs7LC2tqZKlSooFAr+97//5fk8xYGMAJcCKfcTuXLyOCAJcEGzcXSiac9+NOneh4tHozm86W/OR+3jysljXDl5DGt7B+q1bk/dVm3NHaoQQojcaGwyR2LNde586Nu3L127dmXXrl1ERETw999/M2XKFGbNmsWQIUMe+9iEhASWL1/O7t27jdsGDx5MWFjYEx+bpXPnzsbv/fz8CAwMxNPTkz/++INhw4YZ7/vggw8YMmQIBoOBy5cv88knn9C1a1d27tyJqoQsvCUJcClw4eABDAY9Lp7Vcaz4+Lod8XQUSiXVGjSiWoNG3L9zi2NbN3Fk6waSbt/iwF9/cuCvP7F2rUyMmwtejYNQKOXDFSGEKBYUijyXIRQHVlZWtG/fnvbt2zN27FheffVVxo0b98QkduHChaSmppqUIhgMBvR6PWfOnKF27dr5jsXJyYnatWtz7tw5k+0VKlSgVq1aAHh5eTF16lSCg4PZtm0b7dq1y/d5zEH+SpcCZ/dn1v/K6G/RsHeuQHC/QQyfFkbPD8ZS3T8AFApS4q+y+rsvmTP6dQ5tWEN6aoq5QxVCCFHC+fj48ODBgyfuFxYWxnvvvUd0dLTx6/Dhw7Ro0YLZs2c/1bmTkpI4f/48bm5uj90va9Q3JaXk/N2TEeASTpuWysUjhwCoJe3PipRSpaJW40BqNQ7k1tUrrJr5E8kXz3E37hpbZ//CnsULqN+2Iw07dsPBpaK5wxVCCFGM3b59m+eee46hQ4fi5+eHvb09kZGRTJkyhZ49ez72sdHR0Rw8eJDff/89R9/eQYMGMXHiRCZNmpRrS7Ps3n//fbp3746npyfXrl1j3LhxqFQqBg0aZLLf/fv3iY+PN5ZAjBkzBhcXF0JCQp7uyZuBjACXcLFHDpGRnoaDSyVcPKubO5wyy7FiJSo0DGToj7NoO/QNyrlVJi35AZGrlzNr1Kus/t9krp46gcFgMHeoQgghiiE7OzsCAwP5/vvvadmyJfXq1WPs2LEMHz6c6dOnP/axYWFh+Pj45Eh+AXr37s2NGzdYt27dE2O4cuUKgwYNwtvbm/79+1O+fHkiIiJwcXEx2e/zzz/Hzc0Nd3d3unXrhq2tLRs3bqR8+fL5e9JmJCPAJdz5bN0fZAlf87Owssa/Y1catO9MTHQUUetWceloNGf27eHMvj1UquFFQNee1A5qhkqtMXe4QgghiglLS0smT57M5MmTn7jv3LlzTW5Pmzbtkfu6urqi0+lMtsXGxua67+LFi5947kc9tqSRBLgE0+t0nI/aD0j9b3GjUCqp0agJNRo14dalWA7+/Rcndm3j+oWzrJv2LTt/m41/x27Ub9tR+jYLIYQQRUxKIEqwKyePk5p0Hyt7Byp7+5g7HPEIFTyq0eG1txnx01yaDXgR23LOJN29w+7F85n55its/HUaty5fNHeYQgghRJkhI8BF7O6DdN76PYobt5R06fJsxzoXmdn9oWajpihLSN+9sszGwZGgPgNo0qMPp8N3E7V2JTdiznN0ywaObtmAp19DGnXpQfUGAdJGTQghhChEkgAXMQOw98IdQIle//QTogwGwz+rvzWV7g8liUqtwadFa+o2D+Xq6RMcXLeKc/sjuHjkEBePHKKcexUade6Bb8s2aKyszB2uEEIIUepIAlzENKp/Jqpp9Qbyv9J3phsx57l/6yZqS0s8/fwLJDZRtBQKBVXq+FKlji/3blzn0IY1HN2ygbvXrrAl7Cd2L56HX9tO+HfshkMFlycfUAghhBB5IglwEdOo/vloOz1D/9THOReZOfpbza8RGounTaNFceFYsRKhLw4jpN8gjm3fwqG//yLhehwH/vqTyDUr8ApsRuOuvXDz8jZ3qEIIIUSJJwlwEcueAGt1z5AAZ2t/JkoPC2sbGnXujn/HLsQciuTgulVcOnaEM+G7OBO+iyo+9Wjaox/V/AOk7Z0QQgjxlCQBLmIqpQKVUoFOb3jqBDghPo5bl2IzW20FNC3gCEVxoFSqqBkQSM2AQG5ejCFq7SpO7t7OlRPHuHLiGC6e1WnSsx/eQc1lAqQQQgiRTzLV3Ayy6oC1uqebBHfuQGb3h6o+9bC2sy+wuETx5OJZnU5vvsur02YR0LUXGksrbl6MYd2P3zD73REc2rAGbVqqucMUQgghSgxJgM3A4mEZxNOOAGfV/9ZsLN0fyhL78hUIfelVhv80h2b9B2Pt4Mi9G9fZOvsXZo4cRsSfi0lNSjJ3mEIIIUSxZ9YEeOfOnXTv3h13d3cUCgUrV6585L6vv/46CoWCqVOnmmy/c+cOL7zwAg4ODjg5OTFs2DCSinkSoHmGBDj5XgJXT58EoFaTwAKNS5QM1nb2BPUdyPDpYbQZ+joOLpVISbzHnj9+49c3h7B9/izu375l7jCFEEIUgkWLFqFSqXjrrbee6vFz585FoVAYv+zs7AgICGD58uUFHGnxZtYE+MGDBzRo0IAZM2Y8dr8VK1YQERGBu7t7jvteeOEFjh8/zqZNm1izZg07d+5kxIgRhRVygXiWEojzUfvBYKBSjVo4VKhY0KGJEkRjaUXDjt0Y9sOvdHn7A1w8qqFNSyVq7UpmjXqV9T9P5faVy+YOUwghRAEKCwtjzJgxLFq0iNTUpyt/c3BwIC4ujri4OA4dOkTHjh3p378/p0+fLuBoiy+zJsCdO3dm0qRJ9O7d+5H7XL16lVGjRvH777+j0WhM7jt58iTr169n1qxZBAYG0rx5c6ZNm8bixYu5du1aYYf/1LJGgNOfYgQ4q/63VmPp/iAyKVUq6jZrxYtTptHno/FU8amHXpfB8e2bmfveG6z6dhLXzpwyd5hCCGEWBoOBZG2yWb4MhrwPdIWGhjJy5EhGjhyJo6MjFSpUYOzYsSbHiImJYe/evXz00UfUrl07x6jt3LlzcXJyYuXKlXh5eWFlZUXHjh25fNl0MEShUODq6oqrqyteXl5MmjQJpVLJkSNHnu3FLkGKdRcIvV7Piy++yAcffICvr2+O+8PDw3FycqJx48bGbe3atUOpVLJv375HJtZpaWmkpaUZbycmJgKg1WrRarUF/CxyyhoBTk3L3/nSU1K4eDQagGoNGxdJrCJvsq6Fua9JlXoNqFKvAXHnThO1egUXovZx7kAE5w5EULmOLwHde+Pp10haqOVRcbmuouDINS2dsl9XnU6HwWBAr9ej1+tJ1iYTvNg8c2bCB4Zjo7HJ8/7z5s1j6NChREREEBkZyeuvv06VKlUYPnw4ALNnz6ZLly7Y29vzwgsvEBYWxsCBA42P1+v1JCcn88UXXzB37lwsLCwYOXIkAwcOZNeuXcZ9sv+r0+mYP38+AP7+/sbt5qLX6zEYDGRkZACm79WCfN8W6wT466+/Rq1W8/bbb+d6f3x8PBUrmpYBqNVqnJ2diY+Pf+RxJ0+ezIQJE3Js37hxIzY2ef9BfVqpySpAQfj+SO6eyfv/DpMuXUCn1aKxcyDiyDEUR48XXpDiqWzatMncIRgpvf3wcPXg7snD3I89x9VTx7l66jgWTs6U82mAnUcNFEqZB5sXxem6ioIh17R02rRpE2q1GldXV5KSkkhPTyclI8Vs8dy/f58MdUae9s3IyKBy5cqMHz8ehUJB9+7diYqK4vvvv2fAgAHo9XrmzJnDlClTSExMpEuXLrz//vscPXoUT09PAFJTU9FqtUyePNk4cDht2jQCAwPZtm0bAQEBpKamcu/ePRwcHABISUlBo9EwdepUXFxcjIOC5pKenk5KSgp79+4FTN+rycnJBXaeYpsAR0VF8cMPP3Dw4MECH636+OOPGT16tPF2YmIiVatWpUOHDsYfiMI082I415Lv49fAn3a+bnl+3IafviceqN+yNc27di28AEW+abVaNm3aRPv27XOU6pjf89y/fYvoDWs4tnUD6Ql3uL53Gylnj9Owc098WrVFYymrCeameF9X8TTkmpZO2a+rTqfj8uXL2NnZYWVlhb3BnvCB4WaJy1ptneccRq1WExwcjKOjo3Fbq1atmDFjBra2tmzevJmUlBT69u2LRqPBwcGBdu3asXTpUiZOnAiAlZUVarWa0NBQlA8HOBo3boyTkxOXLl2idevWma+JvT2RkZFAZlK5ZcsWRo8eTeXKlenevXsBvwr5k5qairW1NSEhIezcudPkvVqQyXmxTYB37drFjRs38PDwMG7T6XS89957TJ06ldjYWFxdXblx44bJ4zIyMrhz5w6urq6PPLalpSWWufzB12g0RfIL0UKduXCBXqHM8/l0GVpio6MAqB3YTH5xF1NF9TOUX86ubrR5eTghfQcRvXEtB//+i8SbN9gxfyb7VyyhUeceNOjYVfpKP0Jxva7i6ck1LZ00Gg1KpRKFQoFSqTQmgXYqOzNHljdZcWfJ+l6pVDJnzhzu3LmDra2t8X69Xs/Ro0eZOHGiyfPN/n32Y2X/ql27tvE+f39/Nm3axDfffEPPnj0L8yk+Udb1U6szU9Ts79WCfM8W288/X3zxRY4cOUJ0dLTxy93dnQ8++IANGzYAEBwcTEJCAlFRUcbHbd26Fb1eT2Bg8W0R9jRdIC6fOEZa8gNsHJ1wq+1dWKGJUs7Kzo6gPgMYPmM2bYe+kdlC7X4ie/74jZlvvsL2+TOlhZoQQpjJvn37TG5HRETg5eVFQkICq1atYvHixSZ50aFDh7h79y4bN240PiYjI8M4ugtw+vRpEhISqFu37mPPrVKpSEkxX7lIUTPrCHBSUhLnzp0z3o6JiSE6OhpnZ2c8PDwoX768yf4ajQZXV1e8vTMTwLp169KpUyeGDx/OL7/8glarNRZ759Yyrbh4moUwzh14uPhFQFOUSln6VjwbjYUl/h274teuE6cjdnNg5VJuXoolau0qDq1fS93moTTp0ZfyVaqaO1QhhCgzLl26xOjRo3nttdc4ePAg06ZN47vvvmPBggWUL1+e/v375yip6NKlC2FhYXTq1AnIzJVGjRrFjz/+iFqtZuTIkQQFBdG0aVPjYwwGg3GuVEpKCps2bWLDhg18/vnnRfdkzcysCXBkZCStW7c23s6qy3355ZeZO3duno7x+++/M3LkSNq2bYtSqaRv3778+OOPhRFugcnvQhgGvZ7zD1d/q9VEVn8TBSerhVqdkJbEHj7IgVXLuHziKMd3bOb4js3UbBxE0559ca/9+JEDIYQQz+6ll14iJSWFpk2bolKpeOeddxgxYgQNGjSgd+/eudYT9+3blxdffJFbtzI/vbOxseHDDz/k+eef5+rVq7Ro0YKwsDCTxyQmJuLmljkHydLSEk9PTyZOnMiHH35Y+E+ymDBrAhwaGpqvHnmxsbE5tjk7O7Nw4cICjKrwZZVApOexBCL+wlmS7txGY2WNR70GhRmaKKMUCgXV/QOo7h9A3NnT7F+1jHOREZx/+FWlbj2a9OxLdf/G0kJNCCEKSVY3hp9//tlk++P68/bv35/+/fubbOvTpw99+vTJdf8hQ4YwZMiQZ461pCu2k+BKs/yOAGeVP1T3D0BtYVFocQkB4OblTc/3P+X21ctErl7OiZ3buHLyGFdOHsPFoxpNevTFO6QlSpWU4gghhCiZiu0kuNJMo366BLhWE1n9TRSd8pWr0vH1d3h12iwCuvVGY2XNzUuxrJv+HWHvjODQ+tVo055uGU4hhBDCnCQBNgOLrBKIjCeXQNy5dpU7Vy+jVKmo3rDxE/cXoqDZl69A6IvDGDFjDs0GvIi1gyOJN6+zdc7/MfOtoYT/uYiUpPvmDlMIIUq07du3M3Xq1Gc6xpAhQ0hISCiQeEo7SYDNID8lEHFnTwHgXrsuVrYlo4+hKJ3+3ULNsWJmC7W9f/xubKGWeOumucMUQgghnkhqgM0gPwnwg4S7ADhUcCnUmITIq+wt1M5E7Gb/qmXcvBjzsIXaGuo2by0t1IQQQhRrkgCbQX4Wwki+l5kA2ziVK9SYhMgvpUpFnWat8H5kC7VAmvbsJy3UhBBCFDuSAJtB/kaAEwCwdXQqxIiEeHqPbqG2j/OR+6hcx5fAXs9RzT9AWqgJIYQoFiQBNoP8rASXVQJhKyPAogTIrYXa1VPHWf7VcVxrehHUdxA1GjWRRFgIIYRZySQ4M9Co874QRvK9BEBKIETJYmyhNn0WAV17obawJP78WVZOmchvH73L2QPh+VoERwghhChIkgCbgbEEIkNGgEXpZu9cgdCXXmX49DCa9OiLxtKKG7Hn+evbL1jw4duc2bcHgz5v/bCFEEKIgiIJsBnktQY4Q6sl9WF/VUmARUlm4+hEyxde4dXpYQT27o+FtTU3L8aw+n+TmT9mFKfDd6HX68wdphBCFHuLFi1CpVLx1ltvPdNxUlJScHZ2pkKFCqSlpRVQdCWHJMBmYFwI4wkJcFb5g1Kllh7AolSwcXCk+cCXeHX6bIL6DsTC2oZbly+yZurXzHt/JCd3b5dEWAghHiMsLIwxY8awaNEiUlOffjXOP//8E19fX+rUqcPKlSsLLsASQhJgM/hnBPjxNZDJD8sfbBwdUSjlUonSw9rOnmb9BzN8xmxCnnsBS1tb7ly9zLpp3zJ39Juc2LkVvU4SYSHEszMYDOiTk83ylZ+5DqGhoYwcOZKRI0fi6OhIhQoVGDt2rMkxYmJi2Lt3Lx999BG1a9dm+fLlJseYO3cuTk5OrFy5Ei8vL6ysrOjYsSOXL1/Ocb6wsDAGDx7M4MGDCQsLe/oXuISSLhBmkNcSiAf3pP5XlG5WtnYE9xtEoy49OLR+DVFrV3I37ip/z/gf4csWEdi7P3VbtEalll9VQoinY0hJ4XSjALOc2/tgFAobmzzvP2/ePIYNG8b+/fuJjIxkxIgReHh4MHz4cADmzJlD165dcXR0NCauzz//vMkxkpOT+eKLL5g/fz4WFha8+eabDBw4kD179hj3OX/+POHh4SxfvhyDwcB//vMfLl68iKenZ8E88RJAhhXNIK8LYcgEOFFWWNrYZi6zPD2MFs8PwdregYTrcWz45Qfm/Oc1jmzZgC5Da+4whRCiUFWtWpXvv/8eb29vXnjhBUaNGsX3338PgF6vZ+7cuQwePBiAgQMHsnv3bmJiYkyOodVqmT59OsHBwQQEBDBv3jz27t3L/v37jfvMnj2bzp07U65cOZydnenYsSNz5swpuidaDMiwihnkdQQ4+eEiGDaOkgCLssHC2oamPfvRsGM3ojetI3L1cu7duM6mX6cRsXwxgb2ewze0PWqNxtyhCiFKCIW1Nd4Ho8x27vwICgoy6ZMeHBzMd999h06nY/PmzTx48IAuXboAUKFCBdq3b8/s2bP573//a3yMWq2mSZMmxtt16tTBycmJkydP0rRpU3Q6HfPmzeOHH34w7jN48GDef/99Pv/8c5RlpORSEmAzsFDnrQ2alECIskpjZUWT7n3w79CFI5s3cOCvZdy/dZPNs34iYvkSmvbsR/02HVFbWJg7VCFEMadQKPJVhlBchYWFcefOHayzJdV6vZ4jR44wYcKEPCeuGzZs4OrVqwwYMMBku06nY8uWLbRv375A4y6uykaaX8xoVHlbCOOfEginwg5JiGJJY2lFQNeeDJs2i9ZDXsOunDNJd26zdc7/MevtVzm4bhXa9LLXvkcIUTrt27fP5HZERAReXl4kJCSwatUqFi9eTHR0tPHr0KFD3L17l40bNxofk5GRQWRkpPH26dOnSUhIoG7dukBmIj1w4ECT40RHRzNw4MAyNRlORoDNIM+T4B6WQMgIsCjrNBaWNOrcHb+2HTm2fTP7Vy7l/u2bbJs3k30rl9Kkex8atO+CxsrK3KEKIcRTu3TpEqNHj+a1117j4MGDTJs2je+++44FCxZQvnx5+vfvn2Mp+S5duhAWFkanTp0A0Gg0jBo1ih9//BG1Ws3IkSMJCgqiadOm3Lx5k9WrV/PXX39Rr149k+O89NJL9O7dmzt37uDs7Fxkz9lcZATYDCzyXAOc1QbNqbBDEqJEUFtY4N+hC8N+/JX2w0fi4FKR5HsJ7PhtNjNHDWP/qmWkp6aYO0whhHgqL730EikpKTRt2pS33nqLd955hxEjRjB79mx69+6dI/kF6Nu3L3/99Re3bt0CwMbGhg8//JDnn3+eZs2aYWdnx5IlSwCYP38+tra2tG3bNsdx2rZti7W1Nb/99lvhPsliQkaAzUC6QAjxbFRqDX7tOuEb2o4Tu7ayb8Uf3Lsez66FczmwejmNu/bCv2M3LEtB3Z8QouzQaDRMnTqVn3/+2WT7kSNHHvmY/v37079/f5Ntffr0oU+fPjn2fe+993jvvfdyPY6FhQV37959iqhLJkmAzSCrBOJxK8Glp6agTctc4UUSYCFyp1Krqd+6Az4t2nBqzw4ili8mIT6O3YvnE7l6OY269qRhp+6ykqIQQggTkgCbQV5qgLNaoKktLdFY5a+NihBljUqtxrdVW+o2D+X03p2EL1/C3WtX2PvH70StWUmjLj1o1LknVnaSCAshhJAE2CzyUgKRvfwht5ofIUROSpWKui1a492sJWfCdxOxfAm3r1wifNkiotaupGGnHgR07Ym1vYO5QxVCCBPbt29/5mMMGTKEIUOGPPNxygJJgM0gawRYpzeg0xtQKXMmuMYewLIIhhD5plSqqNOsFd7BLTi7fy/hfy7m1qVY9q1YwsG//6Jhx64EdOuNjYOjuUMVQghhBpIAm0HWQhiQWQahUqpy7CMT4IR4dgqlktpBzfFqGsK5yAjC/1zMzdgL7F+1jIPrV+PfoSuNu/WW95kQQpQxkgCbQdYIMGQmwFaanAmwtEATouAolEq8moZQq0kwFw7uJ3zZYq5fOEvk6uVEb1hLg/adaNy9L3blSn/vSyGEEJIAm4UmW8nDo+qAZQRYiIKnUCioGRBIjUZNiYmOJGLZYuLOnSZq7SqiN67Dr20nmvTsi71zBXOHKoQQohBJAmwGSqUCpcKA3qB4ZCeIB/cSAEmAhSgMCoWCGg2bUN2/MRePHCJ82SKunTnJofWrObL5b+q16UjTnn2xlhp8IYQolSQBNhO1AtINkJ6RewJsLIGQBFiIQqNQKKjWoBGefg25dOww4csWcfXUcQ5vXMvRLRvwadkGrYOURQghRGkjCbCZPOyE9sjFMB487ANs6+RUNAEJUYYpFAo86/vjWd+fyyeOEr5sEZePH+HYto2gVLItKYHgfgOlNEIIIUoJ5ZN3EYUhax5cbiUQBoNBaoCFMJOqPvXp//mXDBj/FVV9/UCv5+iW9YS9PZxtc381vjeFEKIohYaGolAojF+VKlXiueee4+LFi/k6zvbt202OY21tja+vL7/++mshRV48SQJsJuqHI8DajJyT4FIfJKHXZQBgIzWIQphFlbr16P3xBCq37Ya7tw86rZaDf//FrFGvsuO32SQn3jN3iEKIMmb48OHExcVx7do1Vq1axeXLlxk8ePBTHev06dPExcVx4sQJXnvtNd544w22bNlSwBEXX5IAm8njSiCy6n8tbW1RazRFGZYQ4l+sK7nR97NJ9P30v7jV8iYjPY3I1cuZNepVdi9eQGpSkrlDFEI8hsFgQJumM8uXwfDoFV//LTQ0lJEjRzJy5EgcHR2pUKECY8eONTmGjY0Nrq6uuLm5ERQUxMiRIzl48KDx/qzR3bVr1+Ln54eVlRVBQUEcO3Ysx/kqVqyIq6sr1atX5+2336Z69eomxyrtpAbYTNSPKYEw1v/K6K8QxYJCoaCaX0M86/sTcyiSPX/8xo2Y8+xbsYToDWsI6NqLRl16YmljY+5QhRD/kpGu59d3dpjl3CN+aIXGMmev/0eZN28ew4YNY//+/URGRjJixAg8PDwYPnx4jn3v3LnDH3/8QWBgYI77PvjgA3744QdcXV355JNP6N69O2fOnEGTy6CawWBgw4YNXLp0KddjlVaSAJuJsQQitwT4ntT/ClEcKRQKajRqQvWGjTl3IJy9f/zOrcsX2bv0dw7+/ReNu/ehUafuaKyszB2qEKIEqlq1Kt9//z0KhQJvb2+OHj3K999/b0yAf/rpJ2bNmoXBYCA5OZnatWuzYcOGHMcZN24c7du3BzKT6ipVqrBixQr69+9v3KdKlSoApKWlodfrmThxIi1btiyCZ1k8SAJsJqrHJMDSAk2I4k2hUGSuLNc4iNMRuwlfupA7166we9E8otaupGnPfjTo0AWNhaW5QxWizFNbKBnxQyuznTs/goKCUCj+WSwrODiY7777Dp1OB8ALL7zAp59+CsD169f58ssv6dChA1FRUdjb25s8LouzszPe3t6cPHnS5Fy7du3C3t6etLQ09u/fz8iRI3F2duaNN97I9/MsiSQBNpOsLhDpuUyCkw4QQpQMCqWSOiEtqR3UjFO7dxC+bBEJ1+PYsSCMyDUrCOz1HPXbdpJafiHMSKFQ5KsMoThzdHSkVq1aANSqVYuwsDDc3NxYsmQJr776ar6OVb16dZwetlr19fVl3759fPHFF2UmAZZJcGaiVmQmvrnXAEsCLERJolSq8GnZhiH/+5kOr72NfQUXHty9w9Y5/8fsd0ZwZPN6dBkZ5g5TCFHM7du3z+R2REQEXl5eqFS5J/BZ21NSUnI8Lsvdu3c5c+YMdevWfey5VSpVjuOUZjICbCbGLhC5rAQnCbAQJZNKraZ+mw74tGzN0a2b2Ld8Mfdv32TTzOnsX7WUoL6D8GnRGuUj/pgJIcq2S5cuMXr0aF577TUOHjzItGnT+O6774z3JycnEx8fD2SWQPz3v//FysqKDh06mBxn4sSJlC9fnkqVKvHpp59SoUIFevXqZbLPjRs3SE1NNZZALFiwgH79+hX6cywuJAE2k8d1gTDWADs6FWFEQoiColJr8O/QBd/QthzZtJ79q5Zy78Z1Nvw8lf0rlxLcbxDeIS1QKiURFkL846WXXiIlJYWmTZuiUql45513GDFihPH+mTNnMnPmTADKlSuHn58f69atw9vb2+Q4X331Fe+88w5nz57F39+f1atXY2FhYbJP1mPUajVVq1bltddeY/z48YX7BIsRSYDN5HGT4B7cSwBkBFiIkk5jYUlA1574te1I9Ma17P/rT+7GXWXdtG/Zt+IPQvq/gFeTYBRKqUYTQoBGo2Hq1Kn8/PPPOe7bvn17no/TvHnzXHv/Qma/4fz0Jy6t5LeumfyzEIbpD6FeryMlMRGQBFiI0kJjZUWTHn0ZPm0WzQa8iKWtLbevXGL1/yaz4ON3OR+1T/4gCSFEETJrArxz5066d++Ou7s7CoWClStXGu/TarV8+OGH1K9fH1tbW9zd3XnppZe4du2ayTHu3LnDCy+8gIODA05OTgwbNoykErAy06NKIFISEzEY9CgUSqwdHMwQmRCisFhY2xDUZwCvTgsjqO9ALKytuRl7gZVT/svCz94jNjpKEmEhhCgCZk2AHzx4QIMGDZgxY0aO+5KTkzl48CBjx47l4MGDLF++nNOnT9OjRw+T/V544QWOHz/Opk2bWLNmDTt37jSplymujAth/GsSXNYEOGsHB6kPFKKUsrK1o1n/wbw6LYwmPfuhtrQk/twZ/pw8jsXjPuTSsSPmDlEIUcS2b9/O1KlTn+kYWeUNWe3NxKOZtQa4c+fOdO7cOdf7HB0d2bRpk8m26dOn07RpUy5duoSHhwcnT55k/fr1HDhwgMaNGwMwbdo0unTpwrfffou7u3uhP4enpXrECLB0gBCi7LC2d6Dl80MI6NKTA38t4/DGv7l2+gRL//sJVX39aNZ/MJXr+Jg7TCGEKHVK1CS4e/fuoVAojP+zCQ8Px8nJyZj8ArRr1w6lUsm+ffvo3bt3rsdJS0sjLS3NeDvxYc2tVqtFq9UW3hN4SKvVGmuAU7UZJudMvH0LAGsHpyKJRRSMrGsl16x0KarramFrR7NBQ2jQqQeRfy3j2NZNXD5+hMXjxuBRvyHB/QZRqaZXocZQVsh7tXTKfl11Oh0GgwG9Xo9en3OiuSje9Ho9BoOBjIe907O/VwvyfVtiEuDU1FQ+/PBDBg0ahMPD2tj4+HgqVqxosp9arcbZ2dnYJy83kydPZsKECTm2b9y4ERsbm4IN/BHUiswh4DPnLrAu45xx+93j0Zn/JiWxbt26IolFFJx/f2ohSociva4uVaja7TnuHjtE4oXTXDp6iEtHD2FT2YPyfo2xLFe+6GIpxeS9Wjpt2rQJtVqNq6srSUlJpKenmzskkU/p6emkpKSwd+9ewPS9mpycXGDnKREJsFarpX///hgMhlxbg+TXxx9/zOjRo423ExMTqVq1Kh06dDAm14VJq9WybvYWACpX9aRLl39WZ9l5J57bh6G2bz2adelS6LGIgqHVatm0aRPt27dHI8velhpmva7P9efejXj2r/iDU7t3kHz1EslXL1GraTCBfQZSvopH0cZTSsh7tXTKfl11Oh2XL1/Gzs4OKysrc4cm8ik1NRVra2tCQkLYuXOnyXs16xP7glDsE+Cs5PfixYts3brVJEF1dXXlxo0bJvtnZGRw584dXF1dH3lMS0tLLC0tc2zXaDRF9gsxaylknQGTc6Yk3gPA3rm8/HIugYryZ0gUHXNd1wqVq9Jl5HsE9RlA+LJFnNq7k3P7wzl3III6IS0J7vc8zu6Vizyu0kDeq6WTRqNBqVSiUChQKpUopcd2iZN1/dTqzBQ1+3u1IN+zxfonIyv5PXv2LJs3b6Z8edOP/oKDg0lISCAqKsq4bevWrej1egIDA4s63Hz5pw+waX2ScRU4mQQnhHjI2b0KXd/+gJenTMOraQgYDJzas4O5o99g/U9TuXfj0SVfQgghcjLrCHBSUhLnzv1T/xoTE0N0dDTOzs64ubnRr18/Dh48yJo1a9DpdMa6XmdnZywsLKhbty6dOnVi+PDh/PLLL2i1WkaOHMnAgQOLdQcIyN4FwrTnp7ELhKMkwEIIUxU8qtHjvU+4HnOevX/8xoWDBzi+YzMnd2+jXmh7AvsMwKGCi7nDFEKIYs+sI8CRkZE0bNiQhg0bAjB69GgaNmzI559/ztWrV/nrr7+4cuUK/v7+uLm5Gb+yCqMBfv/9d+rUqUPbtm3p0qULzZs359dffzXXU8qzR/YBvidt0IQQj1epek16fziO5yd9h6dfQ/Q6HUe2rGf2O8PZMvsXku7eMXeIQogSLDw8HJVKRdeuXZ/5WHXq1MHS0vKxzQnMwawjwE9ajzovKyI5OzuzcOHCggyrSOS2ElxGejppDx4AkgALIZ7Mzcubfp/+lyunjrN3yW9cPnGU6A1rOLZ1Iw06dKFpz37YODqZO0whRAkTFhbGqFGjCAsL49q1a0/9qfru3btJSUmhX79+zJs3jw8//LCAI316xboGuDTLrQY4OTEh8z61GktbWzNEJYQoiarU8aX/uMk8N/YL3GvXJUObTtTalcwa9Sp7liwg9UHxXx5eiMJiMBjQpqaa5Ss/S5uHhoby9ttvM2bMGJydnXF1dWX8+PEAxMbGolAoiI6ONu6fkJCAQqFg+/btxm3Hjx+nW7duODg4YG9vT4sWLTh//jwAQ4YMoVevXkyYMAEXFxccHBx4/fXXc7SKS0pKYsmSJbzxxht07dqVuXPnmty/fft2FAoFa9euxc/PDysrK4KCgjh27FiO5xQWFsbzzz/Piy++yOzZs/P8WhSFYt8ForQylkBkS4Cz6n9tHMuhUCjMEZYQogTzqNeAqr5+xB4+yJ4lv3H9wlkili8hesNamvTsR8OO3dBIWyhRxmSkpfHjy/3Mcu635y3L13tu3rx5jB49mn379hEeHs6QIUNo1qwZXl5PXgjn6tWrtGzZktDQUGPXrD179hgXlADYsmULVlZWbN++ndjYWF555RXKly/PF198Ydznjz/+oE6dOnh7ezN48GDeffddPv744xx5yQcffMAPP/yAq6srn3zyCd27d+fMmTPGTg33799n6dKl7Nu3jzp16nDv3j127dpFixYt8vx6FCYZATaT3CbBPUhIAMBW1vAWQjwlhUJBdf8AXvjyf/R47xPKV/Eg9UESuxbOJeyd4RzasAZdhqyCJkRx5Ofnx7hx4/Dy8uKll16icePGbNmyJU+PnTFjBo6OjixevJjGjRtTu3ZtXnnlFby9vY37WFhYMHv2bHx9fenatSsTJ07kxx9/NFkxLywsjMGDBwPQqVMn7t27x44dO3Kcb9y4cbRv35769eszb948rl+/zooVK4z3L168GC8vL3x9fVGpVAwcOJCwsLCnfWkKnIwAm4mxBCLbJDhpgSaEKCgKhQKvpiHUbBzIqd072Lv0d+7duM7W2b8QuXoFwf0G4dOiNUqVytyhClGo1JaWvD1vmdnOnR9+fn4mt93c3HKsd/Ao0dHRtGjR4rG9chs0aGCy4m1wcDBJSUlcvnwZT09PTp8+zf79+42JrFqtZsCAAYSFhREaGmpyrODgYOP3zs7OeHt7c/LkSeO22bNnGxNpgMGDB9OqVSumTZuGvb19np5TYZIE2EweVwIhE+CEEAVFqVTh07IN3iEtOLp1ExHLF5N48zobfp7KgVXLaDZgMF5NQ1DIggGilFIoFCWm9OffyatCoUCv1xsX9MheU6zVmn6SY21t/cznDwsLIyMjw2TSm8FgwNLSkunTp+Po6Jin45w4cYKIiAj2799vMvFNp9OxePFihg8f/syxPiv5jWcmKmXmD3G6JMBCiCKgUmvw79CFYT/8SssXXsHKzp47166w+vuv+O2T/xATHZWvCTtCiKLj4pLZ3zsuLs64LfuEOMgcPd61a1eOxDi7w4cPk5KSYrwdERGBnZ0dVatWJSMjg/nz5/Pdd98RHR1t/Dp8+DDu7u4sWrTI5FgRERHG7+/evcuZM2eoW7cukJlIt2zZksOHD5sca/To0cWmDEISYDN57AiwLIIhhCgkGksrmvToy6vTZhHcbxAaK2tuxJxn+eRxLBn/EVdO5pzJLYQwL2tra4KCgvjqq684efIkO3bs4LPPPjPZZ+TIkSQmJjJw4EAiIyM5e/YsCxYs4PTp08Z90tPTGTZsGCdOnGDdunWMGzeOkSNHolQqWbNmDXfv3mXYsGHUq1fP5Ktv3745EteJEyeyZcsWjh07xpAhQ6hQoQK9evVCq9WyYMECBg0alOM4r776Kvv27eP48eNF8ro9jiTAZqIyLoTxz4hL8r0EAGxkEpwQopBZ2tgS8twLvDptFgHdeqPSaLh66jhLxn/En5PHcf3CuScfRAhRZGbPnk1GRgYBAQG8++67TJo0yeT+8uXLs3XrVpKSkmjVqhUBAQHMnDnTpKyibdu2eHl50bJlSwYMGECPHj2MrdbCwsJo165drmUOffv2JTIykiNHjhi3ffXVV7zzzjsEBAQQHx/P6tWrsbCw4K+//uL27dv07t07x3Hq1q1L3bp1i8UosNQAm0luC2EYV4GTEWAhRBGxcXAk9MVhBHTpScTyxRzbtonY6Chio6OoHdiMkP6DKV+lqrnDFKLUy97PN8vKlSuN39etW9dkJVzIuWCYn58fGzZseOx5JkyYwIQJE3JsX7169SMf07RpU+O5suJs3rx5rr1/+/bti06ne+SxTpw48dj4ioqMAJvJvxfCMBgMUgMshDAb+/IVaD98JEP+9zN1m4eCQsGZfXuY9/5brP9pKvduXDd3iEIIUWAkATaTf48Aa1NTyEhLA6QEQghhPuVc3eky6n1enjKNWk2CMBj0HN+xmdnvvsaW2b8Y/6MuhBAlmZRAmImxBvjhQhhZf1Q0VtZYWD17KxMhhHgWFTyq0fP9z4g7e5rdSxZw6Wg00RvWcGzbJhp27k6THn2xtjN/L08hRN78e0njpxUaGloqOsbICLCZZHWB0OkN6PQGUpOSALAuBs2hhRAii5uXN899Nonnxn6Bm5c3GelpHFi1jFkjhxHx52LSU5LNHaIQQuSbJMBmosr2ymt1euPSpCr1o1dwEUIIc/Go14BB//2WXmPGUsGjGukpyez54zdmvT2cqLWryEhPN3eIQgiRZ1ICYSZZI8CQORFO/3DGpCxLKoQorhQKBTUDAqnRsAmnwnex94/fSIiPY/v8mUSuXUFw30H4tmqLSi1/WoQQxZuMAJuJMlsCrM3Qo8/IyNwuCbAQophTKJXUbdaKId/9TPsRo7ArX4Gk27fY9Os05r3/Jqf27MCg1z/5QEIIYSaSAJuJUgHqh1mwVmcw9sxTqmTkRAhRMqjUavzadmTY1F8JfWk41vYO3I27xtofv2HBh29zPmpfqZgsI4QofSQBNiONKisB1qPXPRwBVssIsBCiZFFbWBDQtSevTptFs/6DsbC24ealWFZO+S+Lxr7PpWNHnnwQIYQoQpIAm5HFw2bA2WuAVTICLIQooSysbQjqO5BXp4fRpGc/1BaWxJ09zdL/fsLSSZ8Rd+60uUMUQuRBeHg4KpWKrl27PtXjt2/fjkKhMH5ZW1vj6+vLr7/+WsCRPj1JgM1I87AVhFYmwQkhShFrO3taPj+EYT/OxL9jN5QqNZeORrPw0/dY9e0kbl2KNXeIQojHCAsLY9SoUezcuZNr16499XFOnz5NXFwcJ06c4LXXXuONN95gy5YtBRjp05ME2IyMCXCG4Z8EWGZPCyFKCbtyzrQd+jpDp/4fvq3aoVAoOXcggnljRrFu2rckxMeZO0Qhio3Q0FDefvttxowZg7OzM66urowfPx6A2NhYFAoF0dHRxv0TEhJQKBRs377duO348eN069YNBwcH7O3tadGiBefPnwdgyJAh9OrViwkTJuDi4oKDgwOvv/466f9qYZiUlMSSJUt444036Nq1a44FNLJGd9euXYufnx9WVlYEBQVx7NixHM+pYsWKuLq6Ur16dd5++22qV6/OwYMHC+T1elaSAJtRVg1wuk6HTrpACCFKKceKlej05ru8/O0Magc2A4OBk7u3M2f062yaOZ37d26ZO0RRihkMBvTpOrN85XcS6Lx587C1tWXfvn1MmTKFiRMnsmnTpjw99urVq7Rs2RJLS0u2bt1KVFQUQ4cOJeNhfgGwZcsWTp48yfbt21m0aBHLly9nwoQJJsf5448/qFOnDt7e3gwePJjZs2fn+jw++OADvvvuOw4cOICLiwvdu3dHq9XmGpvBYGD9+vVcunSJwMDAfLwihUeGG80oawQ4PcOASmqAhRClXPkqVek++mOuXzjH7iULiI2O4sjm9ZzYsZUGHbvStGc/bBwczR2mKGUMWj3XPt9rlnO7TwxBYZH3gS0/Pz/GjRsHgJeXF9OnT2fLli14eXk98bEzZszA0dGRxYsXo9FkLqpVu3Ztk30sLCyYPXs2NjY2+Pr6MnHiRD744AP++9//olRm5iRhYWEMHjwYgE6dOnHv3j127NhBaGioybHGjRtH+/btgczEvUqVKqxYsYL+/fsb96lSpQoAaWlp6PV6Jk6cSMuWLfP8ehQmybbMKHsNsKVORoCFEGVDpRq16PvxBK6cOMbuJfO5euoEUWtWcGTzegK69qJxt15Y2tiaO0whipyfn5/JbTc3N27cuJGnx0ZHR9OiRQtj8pubBg0aYGNjY7wdHBxMUlISly9fxtPTk9OnT7N//35WrFgBgFqtZsCAAYSFheVIgIODg43fOzs74+3tzcmTJ0322bVrF/b29qSlpbF//35GjhyJs7Mzb7zxRp6eU2GSBNiMLLK3QZMSCCFEGVPFpx4Dxn9N7OGD7F40nxux54n4cxHRG9bQtGc//Dt2RWNpZe4wRQmn0ChxnxhitnPnx7+TV4VCgV6vN47OZi9F+He5gbW19VNG+Y+wsDAyMjJwd3c3bjMYDFhaWjJ9+nQc7B0wZGQucqNL1qJLTEOhUaG0zj2drF69Ok5OTgD4+vqyb98+vvjii2KRAEsNsBllHwGWhTCEEGWRQqGgun8Agyd/T/f/fISzexVSk+6z8/c5hL0zguiN69Bl5F5XKEReKBQKlBYqs3wpFIonB5gHLi4uAMTF/TNxNPuEOMgcPd61a9cj63ABDh8+TEpKivF2REQEdnZ2VK1aFa1Wy/z58/n26ylEhR8gas8BInfuI3L7PtwrubHg57loryWRcTcVgPBtu9ElpqNPyeDu3bucOXOGunXrPvZ5qFQqk/ObkyTAZvTPJDiDLIQhhCjTFEoltYOa8/K3M+j4xrs4uFTkwd07bAn7iTn/eZ0TO7ei1+vMHaYQZmFtbU1QUBBfffUVJ0+eZMeOHXz22Wcm+4wcOZLExEQGDhxIZGQkZ8+eZcGCBZw+fTpz5FhvID09naEvv8LRA4dZ/cdKxo39nDdeeY2M+GRWzlvG3bt3eanbIOq61aJu5Vr4eNTGt7o3vTr3YO6ieQ/PlJm7fPHj12w/sJvj504yZMgQKlSoQK9evUxiunHjBvHx8Vy8eJGlS5eyYMECevbsWQSv2JPJcKMZZS2Eoc3I3gdYLokQouxSqlTUC21HnWatOLplPRHLl3DvxnX+nvE/9q9aRrP+g6nVNLjARtaEKClmz57NsGHDCAgIwNvbmylTptChQwcMBgOGDD3l7JzYtHYDH37yEa1atUKlVNGgnh9NvPzRXk1Cn5JB65BW1KxcjdYd25CWnk7/nv0Y+85HoDcwd8l82jQPxcm5HKgUKFTKh/8q6DfwOb77eSonb55HXSGzLOnrb6Yw+qMPOHv2LP7+/qxevRoLCwuTmL29vYHMWuKqVavy2muvGVu7mZtkW2aU20IYKqkBFkII1BoNDTt1p15oew5tWMOBVcu4feUSf/3vSyrV8KL5wBfx9GsoibAoNbL3882yYsUK0BvQp+mo7VmLXRu2Y9AZQKfHoDOQdu0+6Axo4x8A4Fu5NmvmLc/9BApAoWDcJ58zfuw4UClRZEt016xfC0pFru+poJYhxvrjrDibN2+ea+9fyOxpnN8WcEVNEmAzynUlOFkIQwghjDRWVjTt2Q+/dp2IWrOCqLWruH7hLH9++TlVfOrRfMBLVK7jY+4whci3rLKE7AmtQWeAjGzf6/R5P6AxoVWAOtv3D7crbTQo01VoXGyefKwyQLItM8qqAU7LkC4QQgjxOFa2djQb8CINO3Vn38qlHN64lisnjrF43BhqNGpCswEvUrFaDXOHKQTw7+TWgOFhgotOjyHj4Xa9HvI6SKrKmdAq1P98/6iRW/FokgCb0T8jwAbpAiGEEHlg4+hE65eHE9C1JxF/LubY9s1cOHiACwcP4B3cgpD+L+DsXsXcYYpS7NHJrWmim/fkNrMMIXtya7qtYJLbfy9p/LRKQnlDXki2ZUamJRCZI8BSAyyEEE/mUKEiHV57myY9+rLnj985vXcnp8N3cSZiD76hbQnuNwiHChXNHaYoYZ6U3JJVmpDXBPDfiaxxYlnBJrci/yQBNiPThTAyR4AVkgALIUSelXOrTLd3xtC0Zz/2/PEbF6L2c2zbJk7u2oZf+84E9uqPrVM5c4cpigmDPnsim1mO8NTJrTJbQqs27Zpg/F6S22JLEmAzyhoBTpcRYCGEeCYVq9Wg95jPuXbmJLsXzefyiaMc+ns1R7duJKBLTxp364OVnZ25wxSFSKmDjBsppCemoE/ToUtKJyOZZ0hus9fbSnJb2kgCbEbGEoiMbDXA0gVCCCGemnvtujz3+ZdcOnqY3YvnEX/+LPtW/EH0xrU06d6X+u06mztE8YwMOj0ZN1NIv5qENu4B2mtJpMc9oGGKM7f3HybDXoG+tS26JC16dS5J6r+TW5PvHya3SkluSzvJtszIQp29BCKrC4RcEiGEeBYKhQJPP3886jfgXGQEexYv4PaVS+xePJ+odauw9fIho317NBqNuUMVT6BP1xmTXO21B6RfS0J7/QFk5D6Sq7BSoSpviUKjRGmtRmVtkXNimSS3AkmAzcpkEpw+qwuElEAIIURBUCgUeDUJpmZAU07t2cnepb9z73o8KVHhLHj/HMHPDcK3ZVv5vVtM6JLS0V57gDYuifRrmUlvxq2UXLspKCxVaNxtsXCzQ+Nuh6KiJVsid9Cpexd0Oh1JMTGoHS1RWVkW/RMRJYIkwGZkWgP8cCU4KYEQQogCpVSq8GnRGu/gFhzevJ6di+dz//ZNNv7yIwdW/UmzAYOpHdgMhVJp7lDLBIPBgO5uWmbpwsORXe21JHSJ6bnur7S3wMLdFo17ZrJr4W6LqpyVyUiuVqtFL/+PEfkg2ZYZZS2EkS4LYQghRKFTqdXUb9uRiw/ScFcbiFy9nLtxV1kz9WtcqtWg+cAXqe7fWCY3FSCDTo/2RsrDEoaHI7txSRhSdTl3VoC6vDWah8muhbsdGjdbVPYWRR94GTVkyBDmzZtnvO3s7EyTJk2YMmUKfn5+eT5ObGws1atXN97WaDR4eHgwZMgQPv3002LxHpME2IxyXQpZaoCFEKJQKdVqGnXpgn/7LkStXUnU2hXcjL3Aiq8m4O7tQ4uBL1HFp565wyxx9Gk6tPEPJ6VlTVB7VL2uSoHG1RaNmy0WlTMTXY2bLUpL+Rtobp06dWLOnDkAxMfH89lnn9GtWzcuXbqU72Nt3rwZX19f0tLS2L17N6+++ipubm4MGzasoMPON/m8x4xMV4J7OAKslhFgIYQoCpY2NoQ89zzDfpxF4+59UGssuHb6BEsmfMSyL8YSf/6suUMstnRJ6aSeuUvi9svcXniS+G8juTZ+Lzd/PkzCqvMkR15HezUJMgworFRYVHfErpk75Z6rTcV3GlF5YgiVRjXEuV9t7ILdsazmWOaT39DQUN5++23GjBmDs7Mzrq6ujB8/HsgcUVUoFERHRxv3T0hIQKFQsH37duO248eP061bNxwcHLC3t6dFixacP38eyBzd7dWrFxMmTMDFxQUHBwdef/110tNNS08sLS1xdXXF1dUVf39/PvroIy5fvszNmzdNYlm8eDEhISFYWVlRr149duzYkeM5lS9fHldXVzw9PXnhhRdo1qwZBw8eLNgX7imV7Z82M8ttIQylUhJgIYQoSjYOjrQaPJSALj2JWL6Eo1s3cPHIIS4eOYRX0xCaDRhM+Soe5g7TLAwGA7o7qcZJadq4zE4M+kfV6zpYGEsXjPW6zlZm/cjbYDCg1WrNcm6NRpOv5z5v3jxGjx7Nvn37CA8PZ8iQITRr1gwvL68nPvbq1au0bNmS0NBQtm7dioODA3v27CHjYYklwJYtW7CysmL79u3ExsbyyiuvUL58eb744otcj5mUlMRvv/1GrVq1KF++vMl9H3zwAVOnTsXHx4f//e9/dO/enZiYmBz7ZYmMjCQqKoqXXnopz69HYZIE2IyMk+AyZCEMIYQwNzvn8rR79U0ad+9D+NLfObF7O2f37+XsgXB8WrQm5Lnncazoau4wC41Bp0d7Pfmf3roPJ6gZ0vJYr+tui8qu+NXrarVavvzyS7Oc+5NPPsHCIu+viZ+fH+PGjQPAy8uL6dOns2XLljwlwDNmzMDR0ZHFixcbW/zVrl3bZB8LCwtmz56NjY0Nvr6+TJw4kQ8++ID//ve/KB9OAl2zZg12DxeNefDgAW5ubqxZs8Z4f5aRI0fSt29fAH7++WfWr19PWFgYY8aMMe4TEhKCUqkkPT0drVbLiBEjJAEG2LlzJ9988w1RUVHExcWxYsUKevXqZbzfYDAwbtw4Zs6cSUJCAs2aNePnn382+UG4c+cOo0aNYvXq1SiVSvr27csPP/xgvHjFWa41wNIFQgghzMqpkiudR75Hk5792LPkN84dCOfEzq2c2rOT+m06ENRnAHbOuY9ylRT6NB3auGy9deMeoI1/ALo81Ou626FxtUVpKQM2Be3fE83c3Ny4ceNGnh4bHR1NixYtHtvfukGDBtjY2BhvBwcHk5SUxOXLl/H09ASgdevW/PzzzwDcvXuXn376ic6dO7N//37jPlmPzaJWq2ncuDEnT540Od+SJUuoW7cuWq2WY8eOMWrUKMqVK8dXX32Vp+dUmMyabT148IAGDRowdOhQ+vTpk+P+KVOm8OOPPzJv3jyqV6/O2LFj6dixIydOnMDKygqAF154gbi4ODZt2oRWq+WVV15hxIgRLFy4sKifTr79sxCGIdskOPmFIoQQxUGFqp70fP9T4s+dYfeSBVw8cojDm9ZxfPtm/Dt1o2nPfljbO5g7zCfS3U83li5kLSiRcfsR/XWtVGjc7EzajmkqWmeukFZCaTQaPvnkE7Od+1n2VygU6PV64+irIdtSzv8u67C2tn7KKE3Z2tpSq1Yt4+1Zs2bh6OjIzJkzmTRpUr6OVbVqVeOx6taty/nz5xk7dizjx4835nHmYtYEuHPnznTunPuylAaDgalTp/LZZ5/Rs2dPAObPn0+lSpVYuXIlAwcO5OTJk6xfv54DBw7QuHFjAKZNm0aXLl349ttvcXd3L7Ln8jRMR4BlJTghhCiOXGvVpt+n/+Xy8SPsWjyfuDOniFy9nCOb19O4W28CuvbEwtrmyQcqZP/U6/7TWzf92gP093Ov11U5WDxMcm0fljDYoSpnWSxaVBUkhUKRrzKE4sjFxQWAuLg4GjZsCGAyIQ4yR4/nzZuHVqt9ZOJ9+PBhUlJSjMlyREQEdnZ2VK1a9ZHnVigUKJVKUlJSTLZHRETQsmVLADIyMoiKimLkyJGPfR4qlYqMjAzS09PLdgL8ODExMcTHx9OuXTvjNkdHRwIDAwkPD2fgwIGEh4fj5ORkTH4B2rVrh1KpZN++ffTu3TvXY6elpZGWlma8nZiYCGT+b6ooCuWzzqEw6AFIz9Che1ikbiDn/+pE8Zd1zeTalS5yXUufZ7mmrrXr0m/sl8RGRxG+9HduXYpl79LfObh+NY2798GvXSfUFkWz8pghQ0/GzRQy4h6gjUsmI/4BGXHJj6zXVZW3Qu1mi8bVBrW7bWYJg51pkmQAkwlTJUn266rT6TAYDOj1evR6vZkjy5+suLPfNhgMWFpaEhQUxFdffYWnpyc3btzgs88+AzA+zzfffJNp06YxYMAAPvroIxwdHYmIiKBp06Z4e3tjMBhIT09n6NChfPrpp8TGxjJu3Djeeust43EMBgOpqalcu3YNyCyBmDFjBklJSXTt2tXkNZ0xYwY1a9akbt26TJ06lbt37zJkyBCTfW7evMm1a9fIyMjg6NGj/PDDD7Ru3Ro7O7tHXpusOLJ+FrO/Vwvyd3GxTYDj4+MBqFSpksn2SpUqGe+Lj4+nYsWKJver1WqcnZ2N++Rm8uTJTJgwIcf2jRs3mtTGFLZDUQcANQn3H5CSnAzAnr17sTx5ushiEAVr06ZN5g5BFAK5rqXPs15Tx2btUFW9wJ0jkaTeT2T3wrmEr1iKc72GONT0LtBV5ZQ6sH6gxuaBCpsHamySVVglq1Aaco7U6hUGUmx0JNtmkGKrI9lWR4pNxj+rpCUBZx5+lUKbNm1CrVbj6upKUlJSjhZfxVnWyGjWoFzWNq1WS2JiIlOnTmXUqFE0adKEWrVqMWHCBPr06UNycjKJiYloNBpWrlzJuHHjaN26NSqVinr16tGgQQMSExPRarW0bNkSDw8PWrVqRXp6On379uU///mPyUDghg0bqFy5MgD29vZ4eXkxd+5cGjVqRGJiIklJSQCMHTuWyZMnc/ToUWrUqMHChQuxsLAw2adDhw5A5shvpUqVaN++PZ999pnJc/y39PR0UlJS2Lt3L2D6Xk1+mCsVhGKbABemjz/+mNGjRxtvJyYmUrVqVTp06ICDQ+HXc2m1WjZt2kSz4CC+PxaJxsIKjVqFDmgVGopz5Ud/FCGKp6xr2r59+3zXfIniS65r6VPQ11Sv03Fy1zb2rVhC0u1b3Dywm7SLZ2naqz91mrXK97wOXVI6GXHJZFzLnJSWEZeM7k7qI+t1jaO6braZXy5WJbpe92llv646nY7Lly9jZ2dn9o/Z82Pnzp05tq1evdr4fZMmTYiIiDC5X6czHfEPCQl55H/uNBoNarWayZMnM3ny5Fz3+e233/jtt98eG2dWk4FGjRqxf//+XPepV69ejtjyKjU1FWtra0JCQti5c6fJe/VxiXN+FdsE2NU1s9XM9evXcXNzM26/fv06/v7+xn3+PTsyIyODO3fuGB+fG0tLSywtc35MpdFoivSPnI1lZk2SVv/PJDgLKyv5Q1uCFfXPkCgacl1LnwK7phoN/u07U69VW45sWc++FX+QeOM6m3+dRuRfywjqM5C6zUNzJMIGfbZ63Wxtx/T3c/+It6zU6z4rjUaDUqk01q3+u3VXWaZQKIyvy7PIenxhvb5Z10/9sCtW9vdqQf4eLrYJcPXq1XF1dWXLli3GhDcxMZF9+/bxxhtvAJktOBISEoiKiiIgIACArVu3otfrCQwMNFfoeabJ6gKRIQthCCFESaa2sKBR5x7Ub92B6I1rOfDXnyTEx7H+p+/Zv2IZIe36U7mSNxlxKcak95H9dStYGxeR0DxcVKI49tcVoiQzawKclJTEuXPnjLdjYmKIjo7G2dkZDw8P3n33XSZNmoSXl5exDZq7u7uxV3DdunXp1KkTw4cP55dffkGr1TJy5EgGDhxY7DtAQLaFMHR6WQpZCCFKAZVCjZ9fO7wcA7geeRrttQfYq51R7VaRwHnTndWZ/XWzFpHQuGUmu0oL+TsgCt7cuXML5DjVqlUzacdWUpk1AY6MjKR169bG21l1uS+//DJz585lzJgxPHjwgBEjRpCQkEDz5s1Zv369SU3P77//zsiRI2nbtq1xIYwff/yxyJ/L0zC2QcvQYXg4G1IlbdCEEKJEyUhII/XEbVKO3yIt5h48nNxuiw1oMidWp+tTuZt2nYT0G2htM6jRPphabYJQauR3vhDmYNZ3Xmho6GP/F6FQKJg4cSITJ0585D7Ozs4lYtGL3GhUD2u3DP+0ApE+wEIIUbwZDAYybiSTcvw2KSduo72SZHK/ytHCWLqQVa+bYZnB9b9Xc3LtPtLuPOD47J1U2FyNkH7PU6tJUIF2jRBCPJlkW2Zk8XAEWJk9AZYSCCGEKHYMegPpl++TcuI2qcdvk3Er26IACrDwcMDatzzWPuVRV8i5IpcaCO43iIaduxO1dhUH163i1qVY/vrfl7hUq0FIv+ep2ThQJrUVoNLwMX1ZlNUfuLDfC5IAm1FWCYQSGQEWQojixpChJ+18AiknMkd6TTo0qBRY1XLCyrc81nXLo7LP2yQ1K1s7mvV/gUZdehC1ZiUH//6Lm7EXWPXtJCrVqEVwv+ep0aiJJMLPQKPRoFAouHnzJi4uLvJalhBZC3XcvHkTpVJZ6J13JNsyo6wSiOwjwKp89owUQghRcPRpGaSevkvK8duknrpj0qlBYanCqo4z1r7lsapdDqXV0/8Jtbazp/nAFx8mwis4tH4N1y+cY+WUibjW9CLkuReo5h8gydtTUKlUVKlShStXrhAbG2vucEQ+2djY4OHhISPApZlCoUCjUqDMyBruV0odmBBCFDHd/XRST94h5fgtUs8lgO6fj86V9hqsfTJLGyxrOqFQF+zvaBsHR1o8P4SAbr058NefRG9cS/z5syz/ajxuXt6EPPcCnn4NJRHOJzs7O7y8vGQZ8xJGpVKhVqtRKBSFfu0kATYzjUppLIGQ+l8hhCgaGXdSST19nZQTt0m/mGiy0pq6vBVWvhWw9i2PRVV7FMrCTz5tHBxpNXgojR8mwoc3riPu7Gn+/PJz3L19CHnueTzqNZBEOB9UKpV8qioeSRJgM9OolBgelkDIIhhCCFE4DAYD2msPeHD0BnUPO3A7PNrkfk1lu8xJbL7lUVe0MVuiaetUjtCXXqVx9z4cWLWMw5v/5trpEyyb9BlV6tYj5LnnqerrZ5bYhChNJAE2M41Kic4gI8BCCFHQDDoD6RfvZbYrO34bXUIaADaoQQmW1R2x9imPlW8F1E6WZo7WlF05Z1oPGUGTHn3Zv2oZRzb/zZWTx/hj4idU9fUj5LnnqVK3nrnDFKLEkgTYzCxUCtKySiCkA4QQQjwTg1ZH6tmEzElsJ2+jT84w3qfQKLGo5cgp7WWaPtcKS0cbM0aaN3bO5Wnzyms06dGXfSuXcnTLBi4fP8KS40fwqO9PyHMvUNm7rrnDFKLEkYzLzDRqJemGrFXgZARYCCHyS5+sJeX0XVKP3SL1zF0M2mytJW3Uxs4Nll7l0Cn03Fl3HqVN4bZYKmj25SvQbtgbNO3Zl33L/+DY9k1cOhrNpaPRVGvQiJDnXsDNy9vcYQpRYkgCbGYWKiWpxklwcjmEECIvdPfSMvvzHr9N2oV7oP9nFpvK0TKzVZlveSyrOaJQ/VPPq8uWHJdEDhUq0n7ESJr2eo6I5Us4vmMzsYcPEnv4INUbNibkuRdwrell7jCFKPYk4zIzjUpp7AOslBFgIYR4JG3W8sPHb+VYflhdyca4Epumsl2p75bgWLESHV9/m8CHifCJXVuJORRJzKFIagQ0JaTf81SqUcvcYQpRbEkCbGYadfYEWC6HEEJkMegNpF+5T+rxzJXYMm7msvywT+ZIryaX5YfLAidXNzq9+S6BvZ8j4s/FnNy9gwtR+7kQtZ9aTYII7vc8FavVMHeYQhQ7knGZmYVKYewDLDXAQoiyzpChJ+3CvX+WH05M/+dOlQLLmk7Gkd68Lj9cFpRzq0znke8R2GcA4csWcWrvTs4diODcgQi8AkMI7vc8Lh7VzB2mEMWGJMBmZlICITXAQogySJ+mI/XMnX+WH0791/LD3uUya3q9nZ9p+eGywNm9Cl3f/oCgh4nw6YjdnN23l7P79lI7uAUh/QZRvoqHucMUwuzy/Ztk/fr12NnZ0bx5cwBmzJjBzJkz8fHxYcaMGZQrV67AgyzNTBJgWQhDCFFG6JKylh++Teq5u5CRbflhO42xtMGqEJYfLgvKV/Gg27sfEnQpMxE+s28PZ8J3cSZiN3VCWhLUdyDlK1c1d5hCmE2+E+APPviAr7/+GoCjR4/y3nvvMXr0aLZt28bo0aOZM2dOgQdZmslSyEKIsiLjTqpxEtu/lx9WlbcyljZYeDgUyfLDZUEFj2p0H/0xNy/GEL5sEWf37+XUnh2c3ruLOs1aEtR3EM7ulc0dphBFLt8JcExMDD4+PgD8+eefdOvWjS+//JKDBw/SpUuXAg+wtLNQK2QSnBCiVDIYDGjjHpD6sF2ZNu6Byf2aynZY+zxcfriS+ZYfLgtcPKvT471PuBF7gb1LF3I+MoKTu7dzas9O6rYIJajvQMq5ups7TCGKTL4zLgsLC5KTkwHYvHkzL730EgDOzs4kJiYWbHRlgLRBE0KUJga9gfSLiZkjvSduo7uT+s+diszlh60ejvSqy1mZL9AyqmK1GvT64DOuXzjH3qW/c+HgAU7s3MrJ3dvxadmGoD4Dcarkau4whSh0+U6AmzdvzujRo2nWrBn79+9nyZIlAJw5c4YqVaoUeIClnUW2EgiVTIITQpRABq2e1HN3Hy4/fAf9A+0/d6qVWNUul1nTW9cZlW3JWoGttKpUoxa9PxxH3LnThC9dSEx0FMe3b+bkrm34tmpLUJ+BOLhUNHeYQhSafGdc06dP580332TZsmX8/PPPVK6cWTv0999/06lTpwIPsLQz7QMsI8BCiJJBn5JB6umHk9hO38GQ/s8KawprNdZZyw/XLofSQn63FVdutbzp8/EErp05yd6lC7l45BBHt27k+I6t1GvdjsDeA3Co4GLuMIUocPlOgD08PFizZk2O7d9//32BBFTWWKiUqJAaYCFE8adLzLb88Pl/Lz9sgdXDel7L6o4oVNK5oSRxr12Xfp/+l6unTrB36e9cOnaYI5vXc3z7Zuq37UjTXs9h71zB3GEKUWCeKuM6f/48c+bM4fz58/zwww9UrFiRv//+Gw8PD3x9fQs6xlJNo1LICLAQotjS3sxcfjj1+G3SL983uU9d8eHyw75lY/nhsqByHR+eG/sFV04cY8/S37hy4hjRG9ZydOtG/Np1omnP57Ar52zuMIV4ZvlOgHfs2EHnzp1p1qwZO3fu5IsvvqBixYocPnyYsLAwli1bVhhxllrZJ8FJDbAQwtwMBgPaK0kPJ7HdIuNGisn9Fh72mYtS+JRH42JjpihFYaviU48B477i0rEj7F36G1dPneDQ36s5unkDDTp0pkmPftg6Sd9/UXLlO+P66KOPmDRpEqNHj8be3t64vU2bNkyfPr1AgysLsvcBVshCGEIIMzDo/ll+OPX4bXS5LT/s83D5YQdZfrgs8ajnR1Xfr7l09DB7lv5G3JlTRK1dxeFN6/Hv2JUm3ftg4+hk7jCFyLd8J8BHjx5l4cKFObZXrFiRW7duFUhQZYmFOvsIsCTAQoiioU/XkXYms3NDysk7GFIzjPcpLP61/LC1fDpVlikUCjz9/PGo34CLhw+yd+lC4s6dJnL1cqI3rqVhx2407t4HGwdHc4cqRJ7l+7eak5MTcXFxVK9e3WT7oUOHjB0hRN6Z1gDLHxkhROHRPdCSejJzElvq2QTI+Kdzg9L2X8sPa2QSmzClUCio5h+AZ4NGxERHsvePhVy/cJYDf/1J9MZ1NOzUjcbdemNt72DuUIV4onxnXAMHDuTDDz9k6dKlKBQK9Ho9e/bs4f333zcuiiHyzmQpZJkEJ4QoYBl3s5Yfvk167D3T5YedrTJLG+rJ8sMi7xQKBTUaNqG6f2MuHNzP3j8WciP2PPtXLiV6wxoade5BQNfeWNnZmTtUIR4p3wnwl19+yVtvvUXVqlXR6XT4+Pig0+l4/vnn+eyzzwojxlItewmEUibBCSEKgC4pnQcH4kk5egvttX8tP+xmm1na4FsBjassPyyenkKhoGZAIDUaNeVcZAThSxdy82IMEcuXcPDv1QR07UmjLj2xspVEWBQ/T7UU8syZMxk7dizHjh0jKSmJhg0b4uXlVRjxlXrZR4BVMgIshHgG2hvJJO2+yoOD1yHj4VCvAiyqOWa2K/Mpj9pZlh8WBUuhUODVJJhaAYGcPRBO+NKF3Lp8kfBlizj4918EdO1Fo849sbSRriGi+HjqIUcPDw88PDwKMpYyyUKllBpgIcRTMxgMpF24R9Kuq6SeumPcrqlqj11T18zlh+2kc4MofAqlktqBzfBqEsyZfXsIX7aI21cusfeP3zm47i8ad+tNw07dsLCWRFiYX74zrqFDhz72/tmzZz91MGWRRiVLIQsh8s+g05Ny5Bb3d19FezUpc6MCrHzKY9+iMhaeDlLeIMxCoVTiHdwCr8AQTofvJnzZIu5eu8LuxfOJXLuSJt374N+xKxZW1uYOVZRh+U6A7969a3Jbq9Vy7NgxEhISaNOmTYEFVlZoVIp/lkKWGmAhxBPoUzN4sC+epL1X0d3L7Ner0CixCaiEXfPKaCpIUiGKB6VSRd1mrfAObs6pPTuJ+HMRd+OusWvhXCLXrKBJj774d+iCxlLKckTRy3fGtWLFihzb9Ho9b7zxBjVr1iyQoMoSTfZJcLIQhhDiETLuppK05xoPDsRjSNMBoLTTYBfijm2gGypbjZkjFCJ3SqUKnxatqRPSkpO7txP+5yLuXY9n52+ziVy9nKY9++HXvjMaC0tzhyrKkAIZclQqlYwePZrQ0FDGjBlTEIcsM0xqgGUhDCHEv6Rfvs/9XVdIOXaLhx8Woa5kg32Lytj4V0Shln69omRQqlT4tmpLnWatOLFrKxF/LiHx5nW2z5/FgaxEuG0n1BZSsy4KX4F95n7+/HkyMjKevKMwYdoFQkoghBBg0BtIPXmH+7uukB6baNxuWcsJ+5ZVsPRykvpeUWKp1Grqt+6AT4s2HN+xhYjli7l/6ybb5v7KgVXLaNq7P/XbdEStkU81ROHJd8Y1evRok9sGg4G4uDjWrl3Lyy+/XGCBlRWmK8HJCLAQZZk+XUfywesk7b5Gxq2UzI0qBTYNXLBrXhkLd+mnKkoPlVqNX9uO+LZqw7Ftm4lYsYSk27fYOvsX9q9aRlDv/tRr3R6VWhJhUfDynQAfOnTI5LZSqcTFxYXvvvvuiR0iRE4mXSBkEpwQZZLufjpJ4dd4EBGHPjnzkzSFlRq7IFfsQtxROUhtpCi9VGoNDdp3xje0Hce2bmTfw0R486yf2LdyKUF9BuDbqh0q+RspClC+f5q2bdtWGHGUWZZqWQpZiLJKe/0B93ddJfnQDdBlLlyhcrbCvpk7No1dUVrK7wRRdqg1Gvw7dqVe6/Yc2bKe/SuXcv/WTTb9Op39K5cS2GcAPi3aSCIsCoT8FJlZ9hFgqQEWovQzGAyknU/IXLji9D9tJS087LFrURlr3woolFLfK8outYUFjTr3oH7bjhzZ9Df7Vy3j3o3rbPzlR/avWEpQ34HUbR4qg0bimeQp42rYsGGeJ1wcPHjwmQIqazTZR4ClC4QQpZYhQ0/ykZsk7bqKNu5B5kYFWPuUx65lFSw9HcwboBDFjMbCkoCuvfBr24noTes48NefJFyPY/1P37NvxRKC+g6iTrOW0kJUPJU8JcC9evUq5DDKruyT4BTyJhai1NEna0naH0/S3mvoE7MtXNG4EvbNK6MuLwtXCPE4GisrmnTvQ4P2nYnesJYDq5dzN+4af0//jn3LlxDUbxA1GgeaO0xRwuQpAR43blxhx1FmZe8DjEL6eQpRWmTcSSVp91UeRMZjSH/4KY+9BruQytgFuqK0kZntQuSHhZU1TXv2w79DFw6tX0Pk6uXcuXaFdT9+g3Plqmg8aqHLyEAj7dNEHkjRqZlpVErjUsh6hYwAC1HSpV1KJGnX1cyFKzLntaFxtcGueRVs/F1k4QohnpGFtQ2Bvfvj37EbB/9eRdTaldy5ehmuXmb+mWMEdO1J/TYdsLC2MXeoohjL929inU7Ht99+S9OmTXF1dcXZ2dnkqyDpdDrGjh1L9erVsba2pmbNmvz3v//FYDAY9zEYDHz++ee4ublhbW1Nu3btOHv2bIHGUZiyT4LTywiwECWSQW8g5dgtbvx8mJs/HSblaGbya+nlRIWh9aj4TiNsG1eS5FeIAmRpY0Nw30G8Oi2MoH7Po7Ky5v7tm2yfP4tf33yFnQvnknTntrnDFMVUvkeAJ0yYwKxZs3jvvff47LPP+PTTT4mNjWXlypV8/vnnBRrc119/zc8//8y8efPw9fUlMjKSV155BUdHR95++20ApkyZwo8//si8efOoXr06Y8eOpWPHjpw4cQIrK6sCjacwaFQKFJIAC1Ei6dN1JEdd5/7uq+hup2ZuVCmw8a+IfYvKaFxtzRugEGWAla0dTXs9xw2VJdVsrTj091/cjbvKgVXLiFqzkrotQmnSvQ/lq3iYO1RRjOQ7Af7999+ZOXMmXbt2Zfz48QwaNIiaNWvi5+dHRESEMTEtCHv37qVnz5507doVgGrVqrFo0SL2798PZI7+Tp06lc8++4yePXsCMH/+fCpVqsTKlSsZOHBggcVSWBQKRbYSCGl9JERJoEvMXLgiKSIOQ8rDhSus1dgFuWEX7I7KwcLMEQpR9ihVauq16YB/+86cj9rPgdXLuXb6BMe3b+b49s3UaNSExt37UKVuPVlKXOQ/AY6Pj6d+/foA2NnZce/ePQC6devG2LFjCzS4kJAQfv31V86cOUPt2rU5fPgwu3fv5n//+x8AMTExxMfH065dO+NjHB0dCQwMJDw8/JEJcFpaGmlpacbbiYmJAGi1WrRabYE+h9xknSPr36w2aGkZhiI5vyh4/76monT493XVxieTvDeO1CO3/lm4opwlNs3csG7ogsIi87+zevk5KLbkvVo6/fu6evoH4OkfQNzZUxxcu5LzUfu5cPAAFw4eoFKNWjTq2ouajYOkl3Axltt7tSDft/lOgKtUqUJcXBweHh7UrFmTjRs30qhRIw4cOIClZcEu1/nRRx+RmJhInTp1UKlU6HQ6vvjiC1544QUgMxkHqFSpksnjKlWqZLwvN5MnT2bChAk5tm/cuBEbm6Irmt+0aROAsQZ434FILl08V2TnFwUv65qKUsQAEUu3UemaNY73/pldnmSv5bpbKgnOd+B2HGw2Y4wi3+S9Wjrldl0Vtf3wcPUg4dRR7l84y/UL5/h72reobe1xqlMfh5q1Uaqlc0Rxlf2aJicnF9hx850A9+7dmy1bthAYGMioUaMYPHgwYWFhXLp0if/85z8FFhjAH3/8we+//87ChQvx9fUlOjqad999F3d3d15++eWnPu7HH3/M6NGjjbcTExOpWrUqHTp0wMGh8JvRa7VaNm3aRPv27dFoNJxaNAeAhk2CaORbo9DPLwrev6+pKPkMegMPDl7n5qZz2CQ//FWpAEsfZ2yauVGpqj01zRuieAryXi2d8npdk+8lcGTTOo5s/pvUpPvcitpL0ukj+LXrjF/7Ltg4OhVd0OKxcrumWZ/YF4Q8J8DTp09n8ODBfPXVV8ZtAwYMwMPDg/DwcLy8vOjevXuBBQbwwQcf8NFHHxlLGerXr8/FixeZPHkyL7/8Mq6urgBcv34dNzc34+OuX7+Ov7//I49raWmZ62i1RqMp0l+IWefLKoFApZZfyCVcUf8MicKRej6Be2suoI17gA1qFBZKbBu7YtfMXRauKCXkvVo6Pem6OlZwocWglwnqPYBjOzYTtXYl967Hs3/lUg6uXYVPqzY07tabcm6VizBq8TjZr2lBvmfznAB/+umnjBkzht69ezNs2DDatGkDQHBwMMHBwQUWUHbJyckolaadEVQqFXp9ZsJYvXp1XF1d2bJlizHhTUxMZN++fbzxxhuFElNBMxgMxhIIHVKUL4Q5ZdxO4d66GFKOZ7ZOUlipuFLxPv6DW2LpIImvEKWFxsqKhh270aB9Z87uCydy9Z/Enz/Lkc3rObJlA7UaB9GkRx/ca9c1d6iikOQ5AY6Pj2fp0qXMmTOH9u3b4+HhwdChQxkyZAhVq1YtlOC6d+/OF198gYeHB76+vhw6dIj//e9/DB06FMjsoPDuu+8yadIkvLy8jG3Q3N3dS8zyzYaHyTyANv9tmYUQBUCfmkHitssk7b6aOblNAbaBbtiEuhO5YxNKa1kzSIjSSKlU4R3cnNpBzbhy8hiRq5dz4eABzh0I59yBcNxr16Vxjz7UCghEoZS/0aVJnn+rW1tb89JLL/HSSy9x4cIF5s6dS1hYGBMmTKBdu3YMGzaMXr16Fejw9LRp0xg7dixvvvkmN27cwN3dnddee82k3/CYMWN48OABI0aMICEhgebNm7N+/foS0QMYQKfL+Od7g7y5hChKBr2BB5HxJG68iD4pc3axpZcTTl1roHG1lU4BQpQRCoWCqj71qepTn9tXLhG5ZgUnd23j2pmT/PXtF5Rzq0zjbr3xadkGtYW0OSwNnirjqlGjBhMnTiQmJoa///6b8uXLM2TIECpXLtiaGXt7e6ZOncrFixdJSUnh/PnzTJo0CYtsP3wKhYKJEycSHx9Pamoqmzdvpnbt2gUaR2Ey6HTG7zMMUgIhRFFJPZ/AjWmHSFh+Dn2SFnUFa8q/7EOFofVkAQshyrDyVTzo+Po7vDp9Nk179sPSxpa7cVfZNHM6M0cOJeLPxaTcL7jJWMI8nulzPYVCgVqtRqFQYDBID9unocueAEsNsBCFLuN2CgnrYkg11vmqcWjngV2QmyxVLIQwsivnTIvnhxDYuz9Ht24kau0q7t++yZ4/fmPfqqXUb92BgK49cazoau5QxVN4qgT48uXLzJkzh7lz53Lp0iVatmzJzJkz6du3b0HHV+rpM/4pgUjXP2ZHIcQzeVSdr0N7T1S20g1ACJE7C2sbArr2wr9jN86E7+LA6uXcvBjDofWrid6wFq+gZjTp3gfXml7mDlXkQ54T4PT0dJYvX87s2bPZunUrbm5uvPzyywwdOpQaNaR37dPSPxwB1qEkQxJgIQrck+p8hRAiL1RqNXVbtKZO81AuHT3MgdV/cvHIIc6E7+JM+C6q+tSncY8+VPdvLEstlwB5ToBdXV1JTk6mW7durF69mo4dO+ZoUSbyT/9wEpxeoSRdMmAhClT2fr4A6grWOHargZV3OfkDJYR4KgqFAk8/fzz9/LkRe4HINSs4vXcnl08c5fKJo5Sv4kHj7n2o27wVKllhrtjKcwL82Wef8eKLL+Li4lKY8ZQ5uozMEWC9QolWJwmwEAVB6nyFEEWhYrUadBn5Hs0HvsTBdas4smUDt69cYsPPU9mzeD4NO/fAr10nrGztzB2q+Jc8J8DZlw4WBcc4AowkwEI8qxx1vsqHdb7tpM5XCFF4HCq4EPrSqwT1HciRzes5+PdfJN29w66Fc9m3Ygn123SkUZeeOFSQQcTiQrq7m1lWDbBeoSRdEmAhnsoj63y71UBTSep8hRBFw8rWjqY9+xHQtScnd+8gcvVybl+5RNTalRxavxrvkJY07tabitVk7pS5SQJsZlldIPQo0WYYzByNECWP1PkKIYoblVpDvdB2+LZqS0x0JJF/LefyiaOc3LWNk7u24enXkCbd++JRv4H8njITSYDNTK+XGmAhnobU+QohijuFQkGNhk2o0bAJ8efPcmD1cs5G7OHikUNcPHIIl2o1aNKtN7WDW6BSS0pWlJ761U5PTycmJoaaNWuilov21PQyCU6IfNGnZpC49TJJe6TOVwhRcrjW9KL7ux+ScD2eg+tWcXTbRm7GXmDd9O/YtXg+AV16Ur9NByysbcwdapmQ72GS5ORkhg0bho2NDb6+vly6dAmAUaNG8dVXXxV4gKWd7uEkOB1SAyzE4xj0BpL2xxH/bSRJO6+AzoCllxOV3mlEuZ61JPkVQpQITpVcafPKa4yYMYdm/Qdj4+jE/Vs32T5/Fr++9Qq7Fs4l6e4dc4dZ6uU7Af744485fPgw27dvx8rKyri9Xbt2LFmypECDKwuyT4KTEWAhcpd6PoEbPx4iYfk59Ela1BWsKT/ElwpD68kkNyFEiWRt70BQ34EMnz6b9sNHUs6tMmkPHrB/1TJmjRzKhl9+4PaVS+YOs9TKd+3CypUrWbJkCUFBQSaF276+vpw/f75AgysLZCEMIR5N6nyFEKWd2sICv3adqN+mA+ei9hH513KunTnJsW2bOLZtEzUaNaFx9z5UqVtPJswVoHwnwDdv3qRixYo5tj948EAuzFMw1gCjRK+TLhBCgNT5CiHKHoVSiVeTYLyaBHP19EkiVy/nXGQEFw4e4MLBA7jW9KJx9754BQajVKrMHW6Jl+8EuHHjxqxdu5ZRo0YBGJPeWbNmERwcXLDRlQG67CPAUgIhyjjp5yuEEFDZuy6VvT/lzrWrRK1dwfEdW4g/f5Y1U7/CsZIrAV17US+0HRpLqycfTOQq3wnwl19+SefOnTlx4gQZGRn88MMPnDhxgr1797Jjx47CiLFUM9YAo0QrJRCiDEs9n8C91RfQxks/XyGEAHB2r0z74SNp1n8whzasIXrDWu5dj2fr7F/Yu3Qh/h260rBTN2wcHM0daomT7yK65s2bEx0dTUZGBvXr12fjxo1UrFiR8PBwAgICCiPGUs24EIZMghNlVMbtFG4tOMGtmUfRxj9AYaXGsVsNKv2nEdZ1nCX5FUKUeTaOTjTrP5gRM+bQZujrOFZyJfV+IhF/LmLmm6+wedYM7sZdNXeYJcpTNfCtWbMmM2fOLOhYyiTThTCkBliUHVLnK4QQ+aOxsqJhx240aN+Zs/vCiVz9J/Hnz3J4098c3ryeWo2DaNKjD+6165o71GIv3wmwSqUiLi4ux0S427dvU7FiRXQPP9IXeZN9EpzUAIuyQOp8hRDi2SiVKryDm1M7qBlXTh4jcvVyLhw8wLkD4Zw7EI67tw9NuvehZkBTFErpmJObfCfABkPuo5RpaWlYWFg8c0BlTfY2aFICIUo7qfMVQoiCo1AoqOpTn6o+9bl95RKRa1Zwctc2rp0+warTJyjnVpnG3Xrj07INasnRTOQ5Af7xxx+BzBd71qxZ2NnZGe/T6XTs3LmTOnXqFHyEpZxOFsIQZUDGrYf9fE/8q59vsBsKlYxOCCHEsypfxYOOr79DswEvcujvvzi86W/uxl1l08zp7Pnjt8zSiY5dsbazN3eoxUKeE+Dvv/8eyBwB/uWXX1Cp/ulBZ2FhQbVq1fjll18KPsJSLmsSnA5ZCEOUPgatnsTNF7m/W+p8hRCiKNiVc6bF80MI7N2fo1s3ErV2Ffdv32TPH7+xb9VS6rfuQEDXnjhWdDV3qGaV5wQ4JiYGgNatW7N8+XLKlStXaEGVJaZLIcskOFF6aK8/4M6i08ZyB8va5XDqWl3qfIUQoghYWNsQ0LUX/h27cSZ8FwdWL+fmxRgOrV9N9P+3d+fxcZ3l3f8/Z/bRrJJGqyVb3vcl+57YieMsEBIStiSFJKXhARIKhBYanpZA2h8U2ofS0gCFQgjQLKQEspDFxrETkjiJYzveLXmTZVvWNtLMaPblnN8foznSaLFlW9Joud6v17w0OmeWIx1p9NU9133dr/yReRdfxgUfuo2KWXMKfagFcdo1wBs2bBiN45iycjXAmowAi0lC0zQim1sIPn8ILaVicJopvnUutoXS0kwIIcaa0WRi4RWrWHD5Spp2bmfz87/jyI5t1G/6M/Wb/kzt4mVccNOt1K04b0q9Rp9RG7Rjx47x3HPP0dTURDKZzNv3/e9/f0QObKrI1QBnpAZYTAJqNEXXM/uJ7crW+lrnFVPy0XkYXTL5QgghCklRFGYsW8GMZStoazzEey/8nvq3Xufo7h0c3b2D0prpnH/TrSy8/CqMpslfonbaAXj9+vV86EMfYtasWezbt48lS5bQ2NiIpmmce+65o3GMk5oshCEmi0RjkM4n6skEE2BU8FxXh/PyaSiGqTOiIIQQE0F53SxuvP8rXP6JT7H1xWfZsf4V/MeaeOXHP+DNJ3/FOTd8iOXX3oC1aPKWrJ329OsHH3yQv/mbv2Hnzp3YbDZ+97vfcfToUa666io++tGPjsYxTmr6QhhIDbCYmLSMRuhPR2j/rx1kgglMpTbKP7cc15U1En6FEGIcc/vKWPmpv+IzP3qUK+64G0dxCeGuTv78+C/56efvZuOvf06oo73QhzkqTnsEeO/evTzxxBPZO5tMxGIxnE4nDz/8MDfffDOf+9znRvwgJzN9IQxFFsIQE086EKfzyXqSjSEAis4tx3vzbAzWM6quEkIIUQA2h5MLb/4I533gZva+8RrvPf8M/mNNbHnh92x76TkWXHol5990K2UzZhb6UEfMaf+Vcjgcet1vVVUVBw8eZPHixQB0dHSM7NFNAf0XwtA0bUoVoYuJK7qzg67f7UeLp1GsRopvmUPROeWnvqMQQohxyWgys2TlahZfdQ2H33+P9557hqN7drLnzxvY8+cNzFh2DhfcdBvTly6f8FnltAPwxRdfzBtvvMHChQu58cYb+cpXvsLOnTt55plnuPjii0fjGCc1vQ0aBjQNMqqGyTixf6jE5KYmMwT/eIjIOy0AmGtdlH5iPqZSe4GPTAghxEhQFIVZ51zArHMuoOXgfjY//wz7336TIzu2cWTHNsrqZnHBTbcy7+LLMZom5jt+p33U3//+9wmHwwB861vfIhwO89RTTzF37lzpAHEGMn0mwQEkMyomWRlLjFPJExE6n9hHui0KCriuqsF97QxZzU0IISapytlzuelLXyPQ2sLWF59l54a1tDce4sUf/it/fuIxLrjpVs65/qZCH+ZpO+0APGvWLP26w+GQ1d/OUt+FMABSaQ2kY5QYZzRNI/L2CQJ/PARpDYPLTMnH5mObKwviCCHEVOCtqOTqe/4Pl3zkdravfZFtr7xAd0c7Tfv2TMgAfNrDNrNmzcLv9w/YHggE8sKxGB69BpjeEWAhxpNMJIX/V3sIPHsQ0hq2BSVUfPFcCb9CCDEFRRUrJ2Zdzt4r/5q3q67mYNVFhT6kM3LaI8CNjY364g19JRIJjh8/PiIHNZXkRoAVoxFAegGLcSV+MEDnU/WooWS2t++NM3FeWj3hJz8IIYQYHlXV2HE8yMb6NjbUt7PjWAAt17XVNh9T0FbQ4ztTww7Azz33nH79lVdewePx6J9nMhnWr19PXV3diB7cVJCrATYYJACL8UPLqIT+1ET3xqOgganMTsntC7BUOwt9aEIIIUZZVyTJ6/vb2VjfzusN7fgj+av+Lqpys2pBGSvnl3NOrbcwB3mWhh2Ab7nlFiA7M/Cuu+7K22c2m6mrq+P//b//N6IHNxVoPQthKCYJwGJ8SHfG6XxyH8mmbgAcF1TiuWkWBouxwEcmhBBiNKiqxu7mUM8obxvvHw2g9lmby2U1cflcH6vml3PV/DIq3BNz1LevYQdgVc0Gs5kzZ7J582Z8Pt+oHdSkFm7H+IfPc0lrM3AjmZ6FMBRD9lQk07IanCic6PY2up45gJbIoNiMFN86l6JlZYU+LCGEECMsGE3x5wPtbNjXzmsN7XSEE3n7F1S6WDm/nJXzyzhvRjHmSdbt57RrgA8fPjwaxzF1GIwYDqylHEipaX0SnFFqgEUBqckMgWcPEt3SCoBlhpuST8zHVDzx/8sXQgiR7eaz50SIjfXtbKxvY2tTgEyfYV6Hxchlc3ysWlDOVfPKqPZO7t7uww7AmzZtwu/388EPflDf9qtf/YqHHnqISCTCLbfcwg9/+EOsVuuoHOikYXX3Xo+H9ElwRpMJ0hKAxdhLHg9ne/t2xLK9fVfV4r5mBoosyCKEEBNaKJ7izf0d2dDb0EZrKH+Ud265k1ULylk5r4zz60qwmCbXKO/JDDsAP/zww6xcuVIPwDt37uTTn/40d999NwsXLuRf/uVfqK6u5pvf/OZoHevkYDShmR0oqQgkgqi5SXBGI6QhmZYALMaGpmmE32wm+NJhyGgY3RaKPz4f22xvoQ9NCCHEGdA0jYbWMBvq29iwr40tR7pI9xnltZuNXDanVC9tqCkuKuDRFtawA/D777/PP/7jP+qfP/nkk1x00UX87Gc/A6C2tpaHHnpIAvBw2NyQikA8pLeUM5hMkJA+wGJsZMJJup5uIF7fBYBtUSnFt83F6DAX+MiEEEKcjnAizZsHOvTShhPBeN7+WWUOVs4rZ9WCMi6oK8FmlgnNcBoBuKuri4qKCv3z1157jRtuuEH//IILLuDo0aMje3STlc0D3SdQEsFBaoBlEpwYXfH9XdnevuEUmAx4PzgTx0VV0ttXCCEmAE3TONAWZmN9Oxvq29jc2JmXHawmA5fOLu0pbShneunUHeU9mWEH4IqKCg4fPkxtbS3JZJKtW7fyrW99S9/f3d2N2SyjR8OhWT0okF8DbMyeCqkBFqNFS6sE1x4h/PoxAEwVRZTevgBzpaPARyaEEOJkosk0bx3ws7GhjQ372jkeiOXtn1FaxKqesoaLZ5XKKO8wDDsA33jjjfzd3/0d3/3ud/nDH/5AUVERV1xxhb5/x44dzJ49e1QOctKx9UyEi/fWABvN0gVCjJ50Rwz/k/tIHQsD4Li4Cu8HZqLIi6QQQow7mqZxuCPChp6yhncOdeaVSFpMBi6eVcrKeWWsWlDOTJ8MZJyuYQfgf/zHf+TWW2/lqquuwul08thjj2GxWPT9v/jFL1izZs2IH+Dx48f52te+xksvvUQ0GmXOnDk8+uijnH/++UD2h+Shhx7iZz/7GYFAgMsuu4wf//jHzJ07d8SPZcTYsqvoKYmg3l/ZaMr1AZYALEZWZGsrgT8cREtmUOwmSj4yF/ti6eMthBDjSTyVYdMhPxv3ZZccbuqM5u2vKbazan62lvfiWaUUWU67k63oY9jfPZ/Px+uvv04wGMTpdOo1qzlPP/00TufILpPa1dXFZZddxqpVq3jppZcoKytj//79FBcX67f53ve+x3/8x3/w2GOPMXPmTP7hH/6B6667jj179mCzjc8eppq1ZxnpPiPAJpMJUKUGWIwYNZ7O9vbd1gaAZaabko8vwOSVVoVCCDEeHPFH2LCvjY0N7Ww66CfRZxDMbFS4aGYpK+dnlxyeXeaQuRoj6LT/ffB4PINuLykpOeuD6e+73/0utbW1PProo/q2mTNn6tc1TeMHP/gBf//3f8/NN98MZHsTV1RU8Ic//IFPfOITgz5uIpEgkejthRcKhQBIpVKkUqkR/zoGMDswAmo0QKZnEpzBYARU4skxOgYxonLnbLycu9SxMMGn95PpTIABHKtqcFw5Dc2gjJtjnAjG23kVZ0/O6eQ0Uc5rIpXh3cYuXtvfwWsNHTT680d5qzw2rprnY+VcHxfPKsFh7Y1p6Z4Bs6lisHM6kudX0TRt3A45Llq0iOuuu45jx47x2muvMW3aND7/+c9z7733AnDo0CFmz57Ntm3bWLFihX6/q666ihUrVvDv//7vgz7uN7/5zbwJfDmPP/44RUWjP1tyTusfWdz8FE0ll/G/m8xoaoYty+7grW4Pt8zIsKp63J4SMd5pUNFsY9pRO4qmkLBkODw3QsQ9tV44hRBivPDHYU9AYW9AYX9QIan2juIaFI3ZLo2FXo1FxRqVdpBB3qFFo1HuuOMOgsEgbrf71Hc4iXFdQHLo0CF+/OMf88ADD/D1r3+dzZs389d//ddYLBbuuusuWlpaAPLas+U+z+0bzIMPPsgDDzygfx4KhaitrWXNmjVn/Q0dDvW9Vmh+iuoSJ2jZfn01NbWwN8TsufO58apZo34MYmSlUinWrVvHtddeW7BuKJnuJKHfHSTZFATAuriEsptnMd0+rn/Nx7XxcF7FyJJzOjmNp/OaSKtsOdLFaw0dvLa/g4Ptkbz9FS4rV83zceVcH5fOLsVlk9fowQx2TnPv2I+Ecf1dV1WV888/n29/+9sAnHPOOezatYuf/OQn3HXXXWf8uFarddAlm81m85j84qQd2XIRJRFC07KnwGLNPm8GpeC/vOLMjdXPUH+xfZ10PV2PGkmjmA14b5pN0QUVUi82Qgp1XsXokXM6ORXqvB4PxNhY38bG+nbePNBBNJnR9xkNCudNL2blgjJWzS9nQaVLXptPQ99zOpLndlwH4KqqKhYtWpS3beHChfzud78DoLKyEoDW1laqqqr027S2tuaVRIw7PZPg1FgIyIZhk0n6AIvTp6VVgi8dJvxmMwDmKgclty/AXC6Nz4UQYrSkMirvNXbpobe+tTtvf5nLysp52clrl8/14bHLP1vjzbgOwJdddhn19fV52xoaGpgxYwaQnRBXWVnJ+vXr9cAbCoV45513+NznPjfWhzt8PX2A+wZgS89/NdIFQgxXqi1K5xP7SJ3Ivr3mvLQazw0zUcyGAh+ZEEJMPi3BuB543zjQQTjRO7fCoMA504tZ1dOxYVGVG4NBRnnHs3EdgL/85S9z6aWX8u1vf5uPfexjvPvuu/z0pz/lpz/9KQCKovClL32Jf/qnf2Lu3Ll6G7Tq6mpuueWWwh78SWjWngAc7/2P0dyzIIH0ARanomka0fdaCTx3EC2lYnCYKP7IPOwLSwt9aEIIMWmkMypbmwJs6Am9e0/k15+WOixc1RN4r5zrw1tkGeKRxHg0rgPwBRdcwO9//3sefPBBHn74YWbOnMkPfvAD7rzzTv02X/3qV4lEInzmM58hEAhw+eWX8/LLL4/bHsCAvhCGmugtjDfpI8ASgMXQ1Fiart/vJ7ajAwDrHC8lH5uH0S29fYUQ4my1dcd5rb6djfXtvL6/ne547yivosDyGq++5PDSaR4Z5Z3AxnUABvjgBz/IBz/4wSH3K4rCww8/zMMPPzyGR3WWekaANS37i6MYDFhMshSyOLnEkRCdT+wjE0iAQcG9ZgauK2tQ5AVYCCHOSEbVeP9oFxv2tbOxoY1dx/NHeYuLzFw5Lzt57Yq5PkqdMtgwWYz7ADwpmaykFQsq2eBiNJqwGLN1m1IDLPrTVI3ujUcJ/ekIqGAssVHyiflYp49+yz4hhJhsOsIJXm9oZ0N9O3/e304gmr+4wrIaDyt7RnmX13gxyiDDpCQBuEDSxiIyPT2ADSYjZmP2FywpI8CiDy2l0vm/DcS2twNgX1FG8S1zMEjfSCGEGJaMqrHjWIAN9e28Vt/GjuNB+i4B5rGbuWKuj1Xzy7lyXhllLhnlnQrkr2iBpExFqFp2OWaD0aSXQMgkOJGTiaTw/3oPycYQGBSKb5kjvX2FEGIYuiJJXt/fzoZ9bby+v4POSDJv/+Jqt17Lu6LWi8ko3XOmGgnABZIyFqFqAQAMxt4RYKkBFgDpjhgdv9xNuiOGYjNS+hcLsc0pLvRhCSHEuKSqGk1h+M8NB3n9gJ/3jwbyRnldVhNXzPNlSxvmlVHuHscT5cWYkABcIClDEWjZ/zgNRiMWU64GWALwVJc4EsL/2G7UaBqj14rvnsWYKxyFPiwhhBhX4qkMbx3sYO3uVv60t5WOsAk4qO9fUOli5fxyVs0v49wZxZhllFf0IQG4QFLGIgw9k+AMRpP+i5lKyyS4qSy6o53O39ZDWsNc48R312KMLuktKYQQAMFoilfrW1m3p5WN9e15Sw5bDRpXzq/gmoUVXDW/jCqPvYBHKsY7CcAFkjIVYe5pg2Y0GfUALJPgpiZN0+h+7RihlxsBsC0qpeQT8zFYjIU9MCGEKLDmQIx1e1pZu6eFdw51klZ7B4oq3TbWLK5g1Twfnfve4UMfXIHZLMsOi1OTAFwgKWMRRq3vCLDUAE9VWkYl8OxBIu+2AOC8rBrPB2ZJf18hxJSkaRoNrWHW7m5h7Z5Wdh4P5u2fX+FizeIKrl1UwdJpHhRFIZVK8WJDgQ5YTEgSgAskZSzCogdgY58+wBKApxI1nsb/+D4SDV2ggOeDs3BdNq3QhyWEEGMqo2psOdLF2t0trNvbyhF/VN+nKHD+jGLWLKrk2kUV1PlkToQ4exKACyTbBaLPCLBJFsKYatLBBP5Hd5NqiaCYDZTcvgD7otJCH5YQQoyJeCrDG/s7WLunhfV72/D3aVVmMRm4Yo6PNYuzNb0+WYFNjDAJwAWSMhaRoacLhMmI3Zyt9ey77riYvJLNYTp+uRs1lMTgNOO7ezGWGlehD0sIIUZVIJpk/d421u1p5bWGdmKp3klsHruZaxaUs2ZxBVfMLcNhlYgiRo/8dBVIus8IsNFootKT7UnojyRIplW9LZqYfGL7Oul8fB9aMoOpogjf3YsxFUtPSiHE5HSsK5qdxLa7lXcbO8n0mcRW7bGxZnElaxZVcMHMEmlVJsaMBOACyS+BMFLqsGAxGkhmVFpDcWpLigp8hGI0hN9uJvDsQdDAOsdL6Z0LMdjl11AIMXlomsa+lm7W7s52btjdHMrbv6DSpYfexdVuWd1SFIT85S2Q/gFYURQqPTaaOqOcCEoAnmw0VSP48mHCrx8HoOi8Coo/PAdFRvqFEJNAOqPy3pEuPfQe64rp+wwKnF9XwppFFaxZVMn0Uvn7JgpPAnCBpIxFZPoEYIAqPQDHTnZXMcFoqQydT9UT2+UHwH3tDFxX18qohxBiQoslM/x5fztr97Syfm8rXdGUvs9qMnDF3LLsJLYF5ZTKJDYxzkgALpCUsQg1NwmuJwdV9dQBnwjGC3VYYoRlwkn8v9pDsqkbjAolH5lH0TnlhT4sIYQ4I12RJOv3tbF2dwuv728nnupt3ektMnPNgoqeSWw+iiwSMcT4JT+dBaIaLKhKdrUaA9kXkCpvdtnGFgnAk0KqPUrHo7vJdMZR7CZ8n1yIdZa30IclhBCn5WhnlLV7Wlm7u4XNjZ30mcPGNK+dNYuzpQ0X1BVjkklsYoKQAFxAqjE74mtUegJwzwhwc0BKICa6xKEgHb/egxZLYyyx4btnMeYyqXsTQox/mqax50Sop563lb0n8iexLapyc+2i7EjvoiqZxCYmJgnABZQxZkd8DWT7IFZ5ekaAQzICPJFFt7XR+b8NkNGwTHdR+qlFGJ2WQh+WEEIMKZ1RebexU29XdjyQP4ntwpkl+kpsMklbTAYSgAsoNwJs0LKLX/SOAEsAnpA0CG88RmT9MQDsS0op+fh8lJ5FToQQYjyJJtO83pBdie3VfW0E+kxis5kNXDm3jDWLK7l6QTklDvknXkwuEoALKGO0AtqAANwRlsUwJhotrTLjoINIezb8Oq+swXN9HYpB3hoUQowf/nCiZxJbK3/e304i3TuJrbjIzOqFFaxZXMnlc3zYLfLPu5i8JAAXkKpYgThGLftfd4nDgsVkIJmWxTAmEi2VIfB4A752KyjgvXk2zourC31YQggBQJM/yto9Lazd08p7/Sax1ZbYWbMouyjFeTNkEpuYOiQAF5BqzAZgRc0GYEVRqPLYOOKXxTAmCjWZybY5OxBANWiU3LkA52JpcyaEKBxN09jdHGLt7mzo3dfSnbd/cbU7G3oXV7Cg0iWT2MSUJAG4gDI9bdCMWlLfVunOBWDpBDHeqYkMHb/cTfJwEMViYP+cAFfOKy70YQkhpqBURmXz4U69XVlzn3aaRoPCRTOzK7GtXlRBTbEMrgghAbiA9D7AakLfVt3TC1gWwxjf1Hiajkd3kzwSQrEa8X5qAeFdfy70YQkhppBIIs3rDb0rsYXiaX2f3WzkqnnZldiuXlCOt0gmsQnRlwTgAtIDcKY3AFf2TISTxTDGLzWaov0Xu0gdC6PYTJR9eglKpQ12FfrIhBCTXUc4wfq92VZlfz7QQbLPJLZSh4XVCyu4dlEFl8/1YZMONEIMSQJwAalK9tufNwIsi2GMa5lIio6f7yTVHMFQZML36aVYpjlJpVKnvrMQQpyBxo4Ia/e0sG5PK+8d6ULrM4ltekkR1y3Odm44d3oxRuk8I8SwSAAuoFwANmZ6w26lLIYxbmXCSTr+eyepligGp5myv1qKudJR6MMSQkwymqax83iwZyW2Fhpaw3n7l07zsGZRNvTOq3DKJDYhzoAE4AJSyb49Zcj0hl1ZDGN8yoSStP/3DtJtMQwuC2X3LsVcLhNJhBAjI5VReedQpz7S23ceiMmgcPGsUtYsrmD1wgp9rogQ4sxJAC6gDNl+i4Z0VN8mi2GMP+lAgo6f7SDtj2P0WPDduwyzT/4ACSHOTjiR5rX6dn0ltu4+k9iKLEZWzi9jzaJKVs0vx1NkLuCRCjH5SAAuIFXrCcCZGGgaKIoshjHOpDvjtP/3TjKdcYzFVsruXYapxFbowxJCTFBt3XHW721j7e4W3jzgJ5npncTmc1q4dlEFaxZVcsnsUpnEJsQokgBcQKqWrdsyaGlIRcHikMUwxpF0R4z2n+0kE0xgLLVRdu9STF4Jv0KI03OoPczaPa2s29PK1qb8SWx1pUVctzi7KMWKWpnEJsRYkQBcQLnlKI2KBvEgWLITqnoDsHSCKJRUW5T2/96JGkpiKrNTdu9SjG5roQ9LCDEBqKrGjuNBfSW2A235k9iW13hYszi7/PCccpnEJkQhSAAuoEwmW+9lyAVgdzUAVR5ZDKOQUi2RbPgNpzBVFFH2V0sxuqSJvBBiaMm0yqZDftb1TGJrDfW2tzQZFC6ZXcqaxZVcu7BC7/cuhCgcCcAFpPXUfhnoCcA9chPhTkgv4DGXbA7T8fOdqJE05ioHvk8vweiU8CuEGCgUT7Gxvp21u1t4rb6d7kTvJDaHxcjKBeWsWVTByvnleOwyiU2I8UQCcAGp/UeAe+gBWEaAx1TyWDftP9+FFktjrnFS9pdLMMjMayFEHy3BOOv2trJ2dwtvH/KTyvQW9Ja5rKxeWMGaRRVcOqcUq0kmsQkxXkkALqBMJgOAUVEhHtK3SwnE2Es0hej4+S60RAbLdBe+v1yCwSa/HkJMdZqmsb8tzLo92dC7/Vgwb//sMke2tGFRBStqvBhkEpsQE4L8hS+g/BHggL69UkaAx1TicJCOR3ejJTNY6tz47lmMwSq/GkJMVRlVY2tTF2t3Z+t5G/29vdoVBc6p9eqhd3aZs4BHKoQ4U/JXvoDUdHYEuH8JRG6Vn45wgkQ6I2+jjaL4gQD+x3ajpVSssz2U3rUYg0W+30JMNfFUhjf2d7B2Twvr97bhjyT1fRaTgcvn+Lh2UQXXLCyn3CWT2ISY6CQAF5CaGTwAFxeZsZoMJNIqbaGE9AIeJfGGLjp+tQfSKtZ5xfg+uRBFGs8LMWV0RZKs39fGuj0tvN7QQSyV0fe5bSauWVjBtYsquHJeGU55V0iISUV+owtIL4Ho1wUitxhGoz9KcyAmAXgUxPb68f9mL2Q0bAtKKL1zIYpZlp0WYrI72hVl4wmFx3+xmfeOBMiovZPYqj02vT/vBTNLMBvlNUGIyUoCcAENNQIM2TrgRn+UlpDUAY+02K4O/E/sg4yGfXEpJbcvQDHJHzohJiNN09jdHNJXYtt7IgQYgS4AFla5e5YfrmBxtVsWpRBiipAAXEC5EWDjIAG4uqcTRHOgsAFY0zTi8TjBYJBQKEQoFEJVVcxmMxaLBbPZnHe970eTyTTu/phEt7fT+dQ+UMG+vIySj81DkVEeISaVVEbl3cOdrOsJvcf79FQ3KDDLpfLxyxdy/ZJqeYdNiClqQgXgf/7nf+bBBx/ki1/8Ij/4wQ8AiMfjfOUrX+HJJ58kkUhw3XXX8aMf/YiKiorCHuwwqLmFMBQVEqG8fblOEC2jvBxyOp3G7/fr4bZv0M1dT6VSZ/z4Q4XjoQK01WrF4/Hg9Xrxer3Y7fYR+1ojW1vperoBNCg6p5zij85DkZZFQkwKkUSa1xraWbenlfV7WwnFexelsJuNXDnPx5pFlVwxp5hNG//EjZfMwGyWPt9CTFUTJgBv3ryZ//qv/2LZsmV527/85S/zxz/+kaeffhqPx8P999/PrbfeyptvvlmgIx2+oWqAAaq8o9sLuKWlhW3btrFz506i0egpb2+323G73bjdbkwmE6lUimQySSqVyrueTCb1/saAvv9MWa1WPQwPdrHZbMMaZY7uaO8Nv+dXUHzrXAm/Qkxwbd1x1u9tY+3uFt486CeZVvV9pQ4Lq3smsV0+14etZ4Lr2bweCSEmjwkRgMPhMHfeeSc/+9nP+Kd/+id9ezAY5Oc//zmPP/44V199NQCPPvooCxcu5O233+biiy8u1CEPy8lqgKvcI98LOBqNsmvXLrZt28aJEyf07bmQmQu4Ho9Hv567WCzDXw44k8nowbd/OD5ZcE6lUnq5RSAQIBKJkEgkaG1tpbW1ddDnGk5AThwI0PlUPWjguLAS7y1zJPwKMUEdbO9dlGLb0QBa7xw26kqL9P68504vxii/50KIIUyIAHzffffxgQ98gNWrV+cF4C1btpBKpVi9erW+bcGCBUyfPp1NmzYNGYATiQSJREL/PBTKlh+c7WjlcKVSKTRN0wOwUdHQ4kHSyWS2yzpQ5syemhPB2Fkdk6qqHD58mO3bt9PQ0KCPzhoMBubNm8fy5cuZNWsWBsPJ62BP9xiMRiNGoxGb7cz7ZaZSKT0MB4PBAdeHE5AtZgvOpAWnwYbX56WiwoBvv4rP58Plco1YjXLu+yOjS5OLnNfCU1WN7ceDrN/bzrq9bRzqiOTtXzbNzeqF5axeWM6cMof+O61m0qiZgY8n53RykvM6+Qx2Tkfy/I77APzkk0+ydetWNm/ePGBfS0sLFosFr9ebt72iooKWlpYhH/M73/kO3/rWtwZsX7t2LUVFYzQhos+whUHRUDIpXv7js6iG7EhrOAVgoiOc5LkXXuR0mxQkEgn8fj+dnZ15PzA2m43S0lJKSkowmUw0NDTQ0NAwAl/Q2LDZbNhsNioqKlBVlWQySSKRIJlMDrik02mSqSSdSpJOY5imYAesO6A/lsFgwGq16o9ps9mwWq1YrdZT/kMwlHXr1o3UlyrGETmvYyutQkNQYWenwq4uhVCq9x9Vo6Ix162xtERjSbGG19oJkU72v7eP/afxHHJOJyc5r5NP33M6nJLN4RrXAfjo0aN88YtfZN26dWc1ktjfgw8+yAMPPKB/HgqFqK2tZc2aNbjd7hF7nqGkUileeekl/XOlJ2tdf9XF4KoEst0XHn5/PYm0yjmXraS2eHjBvLW1lbVr19LU1KRvs9lsLFmyhGXLllFZWTnuOjOMhkwwQdtPdxDqDhH1QeYiD6FICL/fj9/vp6urC1VVicVixGL5Ew0VRcHr9VJaWorP58v7ONSkvFQqxbp167j22mtlYs0kIud17IRiKTY2dPCnvW28vr+DSLJ3+NZpNXHVPB/XLiznyrmluGxnfi7knE5Ocl4nn8HOae4d+5EwrgPwli1baGtr49xzz9W3ZTIZXn/9df7zP/+TV155hWQySSAQyBsFbm1tpbKycsjHzY3y9ZfrSDAWNLV3sobR5oZEJ+ZMDPo8f24xjPZwmlnlpz6uYDDIE088QSSSfYtwzpw5rFixgvnz50+pF4RMJIX/V/UYQhl8Ph9l/2cZRmd+DXMmk6Grq4v29nY6OjryLolEgq6uLrq6ujhw4EDe/RwOBz6fb8DF4XAAY/szJMaOnNfR0RyI6a3K3j7kJ91nUYoKt7WnP28lF88qxTLCvbrlnE5Ocl4nn77ndCTP7bgOwNdccw07d+7M23bPPfewYMECvva1r1FbW4vZbGb9+vXcdtttANTX19PU1MQll1xSiEMevj4B2GBzQaJz4EQ4j33Yi2EkEgkef/xxIpEI5eXl3HnnnXg8nhE/7PFOTWbwP7abdFsUo9uC79NLBoRfyNYo58JrX5qmEQ6H9TDcNyCHQiEikQiRSIQjR47k3c9kMmE2m0mlUlRUVFBeXk55eTkej+eMyymEmGw0TaO+tZu1u7Ohd+fx/Ne8eRVOPfQunebBIJPYhBCjZFwHYJfLxZIlS/K2ORwOSktL9e2f/vSneeCBBygpKcHtdvOFL3yBSy65ZNx3gNC0ngCsKBjsHggySADOln2cajEMVVV55plnaG1txeFwcMcdd0zJ8KulVfy/2UuyqRvFbsL36SWYik+vdEZRFFwuFy6Xi5kzZ+bty9VV9x8x9vv9pNNp0uk0u3btYteuXfp9zGazHob7XpxO55QoRREinVF570hXtnPDnhaOdvaWHCkKnD+jmDWLsp0b6nyOAh6pEGIqGdcBeDj+7d/+DYPBwG233Za3EMZ4lyuBMBqNYOsJq/FA3m2qvMNbDGP9+vXU19djNBr5xCc+MWBS4FSgqRqdTzeQaOhCMRvw3b0Yc8XI/jG1Wq1UV1dTXV2dtz2TydDR0cErr7zC9OnT8fv9tLW10dHRQSqV4vjx4xw/fjzvPjabbdBgPGaTMIUYRbFkhtf39y5K0RXtnYhrNRm4Ym52UYqrF5bjcw4sRxNCiNE24QLwxo0b8z632Ww88sgjPPLII4U5oDPVMwJsMJrA1hPU+o0AV+aWQz5JL+Bt27bpi37cfPPN1NbWjsLBjm+aphF84RCx7e1gUCj9i4VYZ4z+ZMYco9FISUkJHo+Hyy67TK9RymQydHZ20tbWlnfp7OwkHo/T1NSUN1kRwOl0DgjFZWVlg9asCzGe+MMJ1u9rY92eVv68v514qrfMy1tk5uoF5axZVMmV83wUWSbcnx4hxCQjr0IFkhsBNpiMYPNmN/YLwNX6csiDB+DGxkaef/55AK688soBq+RNFd2vHiX8VjMAJR+bh21+SYGPKMtoNFJWVkZZWRmLFy/Wt6dSKX2UuO8lEAgQDocJh8McOnQo77E8Ho9eW1xRUUFFRQWlpaXZdxCEKJAj/kjPohStvHekkz5z2KgptuulDRfUFWMySi28EGL8kABcIHoANpp6SyAS+e09Kj251eAGlkB0dnby1FNPoaoqixYtYuXKlaN6vONV+O0ThNZlJ6R5b5pF0YryAh/RqZnNZiorKwd0KkkkErS3tw8IxuFwWF/8o2/P5txEvlwgzgXkkVzgQ4i+NE1j5/GgHnrrW7vz9i+udrNmUSVrFlewoFJ+DoUQ45cE4EIZtAa4/whwtgSiI5wkkc5gNWVH++LxOI8//jixWIzq6mpuueWWKdlpILqjncCz2TZlrqtrcV42rcBHdHasVis1NTXU1NTkbY9Go3oYzq1619bWRjKZHHQVPLvdnheIcx9PZzlrIXKSaZV3DvtZu7uVP+1tzVue3WhQuHhWCdcurGD1ogpqhtmvXAghCk0CcIH0lkCYwNZTr9ovAHuLzFhNBhJpldZggumlRWQyGZ5++mk6OjpwuVx84hOfmJLBJr6/i86n6kEDx0WVuK+dUehDGjVFRUXU1dVRV1enb1NVlWAwmBeIW1tb8fv9xGIxGhsbaWxszHuckpKSvBKK8vJySkpKpuQ/T+LkuuMpXmtoZ+3uVjbUt9EdT+v7iixGVs4vY82iSlbNL8dTJD1XhRATjwTgAsm1QTMYhh4BVhSFaq+dwx0RTgRjTC8t4pVXXuHgwYOYzWZuv/32MVm5brxJHuvG/+u9kNGwL/XhvXnOlHur1WAwUFxcTHFxMQsWLNC3p1IpvYyibzgOh8N0dnbS2dnJvn379NubTKa8UeJcOM4t7CGmjrZQnHV7s6UNmw76SWZ6J7H5nFauXZSdxHbJ7FJsZqk9F0JMbBKAC6S3BnjoAAxQ6bb1BOA4mzdv5t133wXgwx/+8IB2XFNBqi1Kx6O70JIZrHO8lHx8Poo0y9eZzeZBW7VFIpEBo8VtbW2k02mam5tpbm7Ou32uG0Xf+mKfzycrLE0imqZxsD3MKz2LUrx/NJC3f5bPwbWLs4tSnFPrlUUphBCTigTgQtGy06WzJRBDB+BcL+DGw4fYvvNVILtC3qJFi8bmOMeRdDBBxy92oUbSmGuclH5yIcoIL486WTkcDmbNmsWsWbP0baqq6m3acuG4tbWVrq6uQbtRKIpCaWnpgNFir9c75UbgJ6qMqvH+0S59JbZDHZG8/edM9+qdG+aUOwt0lEIIMfokABfIcEeAqzw2PEqMrt3vo2gay5cv5/LLLx/LQx0XMpEUHT/fRSaQwFRmx3f3YgxW+fE9GwaDQV8Ouu8/VLluFP1HjGOxmL763e7du/XbWyyWAaPF5eXl2O32QnxZop94KsObBzpYtyc7ia0jnNT3WYwGLp1TyppFlaxeWE65+/RWThRCiIlKEkSh6F0g+o4AhwbcrLzIyDXm/SiZFLW1tdx0001TbrRNTWbwP7abdFsUo9uC7y+XYHROvYl/Y2WwbhSaptHd3Z0XiFtbW+no6CCZTHLs2DGOHTuW9zhut3tAN4rS0lJMJnnZGW3+cILXGrIrsb3W0E40mdH3uWwmrllQzrWLKrlqfhlO+UdSCDEFyStfgeQvhNETgNMxSCfA1LvqV1H4GG5DgggWbrnto1MuPGhpFf9v9pJs6kaxm/B9egmmYhmlGmuKouB2u3G73cydO1ffnslk8Pv9A0aLg8EgoVCIUCjE/v379dvnRp37T7zzeDxT7h+7kaSqGrubQ2yob+PVfW1sPxbIVVkB2XeS1iyqYM3iSi6cWYJZFqUQQkxxUytNjSN5C2FYXIACaNlRYGeZfrt4R3ZUbU+qnM3HolzvnTpdHzRVo/PpBhINXShmA757FmOukO4E44nRaNSXbF66dKm+PRaLDdq7OJFI6Nt37dql395qtQ4IxVJGcXKheIo39newYV8bGxvaae9O5O1fVOXmmoXlXLe4ksXVbvkHQwgh+pAAXCB6GzSjEQwGsLohEczWAfcE4GQyqfdyPaZ6eW77ca5fUjnUQ04qmqYRfOEQse3tYFAo/YuFWKdPnfA/0dntdmbMmMGMGb39mTVNIxgMDgjFHR0dJBIJjh49ytGjR/Mex+12DwjGPp9vyr0TAtnv34G2sD7K+15jF+k+aw87LEYun+tj1fxyVs4v11eSFEIIMdDU+ysyXuRqgHN/yG2e3gDc49ChQ2QyGRwuN8G4jfV72+iOp3DZJn8rqu5XjxJ+K9uaq+Rj87DNLynwEYmzpSgKXq8Xr9fLvHnz9O3pdFovo+jboq1vGcWBAwf02xsMhgHdKMrLyydlN4pYMsOmQx1s2NfOhvo2jnXlL4s+q8zB1fPLWbWgnAvqSrBIVxQhhBgWCcAFktcFArIBOAjEA/ptcrWTixbMZzYODrZHWLu7ldvOq2EyC799gtC6IwB4b5pF0YryAh+RGE0mk0mfLNdXPB4fMFrc2tqqd6lob2/Pu33/bhS56xOtjOJoZ1Qf5d100E8i3bsghcVk4JJZpayaX8aqBeXMKJWSICGEOBMSgAtED8CGPgEYIJHtBKFpGg0NDQDMmzePm23w/XUNPLu9eVIH4OjOdgLPZkf7XFfX4rxsWoGPSBSKzWZj+vTpTJ8+Xd+maRqhUGjAaHF7e/uQ3ShcLteA0eKysrJxU0aRTKu819iph96D7fm9ead57axaUMaq+eVcOtuH3SKrsAkhxNkaH38BpqJcDXDfEgjQSyBaWlro7u7GbDZTV1fHh4qTfH9dA28e6KC9O0GZyzrYo05o8QMBOp+sBw0cF1XivnbGqe8kphRFUfB4PHg8nrwyir7dKPqOGgeDQbq7u+nu7s4ro+i7qEf/bhQGw+iXEbSF4mysb+fVfW28caCDcCKt7zMaFM6fUcyqBeVcvaCcueXOSVfaIYQQhSYBuEAGlkD0TPDqCcC58oeZM2dmQ7DPzPJaL9uPBnhx5wnuurRurA95VKU6Yvh/sxcyGvalPrw3z5E/+mLY+naj6CtXRtF3tLi1tZV4PH7SRT369i1Op9P9n+60ZVdgC7CxZ5R3d3N+z2+f08LK+eWsml/O5XN9eOyTv85fCCEKSQJwgfR2gRh8BLhv+UPOzcur2X40wLPvH59UAViNp/E/thstnsYy3UXJx+ajGCT8irM3VBnF6S7qcejQIb10IheQy8rKTlpf3BVJ8vr+djbsa+O1hna6oil9n6LAshovq+aXcfWCcpZUezDIz7wQQowZCcCFoneB6FcDHA8SiUT0P8B9Fx344LIq/umPe9jaFKDJH2V6adGYHvJo0FQN/+P7SLfHMHoslH5yEYpZZrKL0XOqRT36jxYHAgEikQiHDx/m8OHDeY/lcrnygnHYUMT2do2NB7rY1tRFny5luGwmrpxXxtXzy7lqfhk+5+QrYxJCiIlCAnCB5C2EAXkBOFermKtJzCl327h0to83DnTw/I5m7ls1Z0yPeTQEXzqsL3RR+qnFGF2yxLEojL5lFEuWLAEglUrx/PPPc95559HZ2alPuGtrayMUCun1xQcPHsx7rJmaBa/JjrHIw4xpVVy4aCaXL5mJ3SahVwghxgMJwAUyaBs0gHho0PKHnA+tqOaNAx38YdtxPr9y9oSuk41saSX85+MAFH90HpZpzgIfkRADGY1GqqurmTFjBpqmcagjwoZ9bWzbe5wDTc04tRjFSgyvEqPYEMOupHAqSZzGJCSCpA418eahd3jzBSguLh5QSlFaWorZLDW/QggxliQAF4gegPt1gcjEghw8mh1NGiwAX7e4kr///S72t4XZ19LNwqqJuTpa4kiIrmeyE/1cV9dStKzsFPcQojBSKry+v4M/H8i2Kjvij/bZ62RGaTmLehajuGhmCWoqoY8S9x0xjkajdHV10dXVRX19vf4IiqJQUlIyIBiXlJSMm1ZtQggx2cira6H0TIIz9hsBPtptIB6PU1RUxLRpA3vgeuxmVi0o45XdrTz7fvOEDMDpQAL/r/dARsO2uBT3aml3JsaP3JLDbxzo4LX6Nt48YCT1zlZ9v9mocNHMUlYtKGfV/DJmlfV758JcNGAZaIBwODxoMI7H4/j9fvx+P3v37tVvn1vxrn8wLi4u7n3dEEIIcUYkABdIbgRYyS2E4awEYH93tkZwzpw5Q/YjvXnFNF7Z3crz25v56nXzJ9TscTWZwf+r3ajhFOZKh3R8EONCWyjOGwc6eONAB28e6KA1lOizV6HCbeXqBeWsnF/OZXN8OK2n/9LpdDpxOp3MnDlT35brSDFYME4mk4OueGc0GvH5fHnBuKysjOLi4jHpYSyEEJOBBOBC0bLTw425tzhL54DNS0M8u8pb39np/V29oByn1cTxQIytTV2cX1cy6oc7EjRNo+vpBlLNEQwOM6V3LcJglZEsMfYiiTTvHPbzxn4/bxxop6E1nLffajJw4cwSLp5ZDC17ufcj12KxjPwEzb4dKWbPnq1v1zSNYDA4IBi3t7eTSqX01m19mUwmysrK8kaLfT4fXq9XgrEQQvQjAbhABkyCMxjoqrqC9sM+FCU7AjwUm9nIdYsr+d3WYzz7fvOECcDd65uI7ewAo0LpJxdiKrYV+pDEFJHOqGw/FuTNAx28sb+DrU1dpPv0KFMUWFLt4bI5Pq6Y6+O8GcXYzEZSqRQvvrh3zCebKoqC1+vF6/Xm/TOsqiqBQGDQYJxOpzlx4gQnTpzIeyyj0UhpaSk+nw+fz5d33WqVrhRCiKlJAnCBDGiDBuy3LAHiTLfHTtpgH+DmFdX8busx/rjzBN+4aRFm4/ge4Ynu7CD0pyYAim+Zg7XOc4p7CHHmct0a3jzQwZ/3d/D2QT/difwV3WqK7Vwx18flc8q4ZHYpJY7x34LPYDBQUlJCSUkJ8+fP17erqkpnZ+eAYOz3+8lkMvq2/lwuV14gzl3cbreMGgshJjUJwAXS2wWitwSgIeIE4sxN7cuWSJxk1OnS2aX4nBY6wkneONDBqvnlQ9620JLNYbp+m5317rysGscFlQU+IjEZdYQT+gjvmwc6aA7G8/Z77GYum1PKZXN8XD7Hx4xSR4GOdOQZDAY9vC5cuFDfnhsxzi377Pf79euRSETvY9zY2Jj3eCaTaUAwLi0tpbS0VEaNhRCTggTgQtG7QGRPQTKZ5PCJLgDmpXZC5yEonT3k3U1GAx9cVs0v32rkufebx20AzoST+H+1By2lYp3rxXPjrEIfkpgkYskM7xz266O8+1q68/ZbjAbOryvWyxoWV3swTrEJl31HjPu3VYzFYnmBOHfp7OwknU4PWmcM4Ha7B5RS5EaNJ3JfciHE1CIBuED61wC3traSyWRwGZOUZfzQ9PZJAzBkF8X45VuNvLK7hVgyg90yviaUaWkV/6/3kgkkMPnslN6+AMUofyDFmcmoGjuPB3sCbztbjwRIZtS82yyqcnP53OwI7wV1JePud2I8sdvt1NTUUFNTk7c9k8nkjRr3HTmORqOEQiFCoRCHDh3Ku5/ZbB5y1Hg0JhAKIcTZkABcIP0XwohEIgC47WaUMNC0Cc6586SPcU6tl9oSO0c7Y/xpbys3La8e1WM+HZqm0fWHAySPhFBsxmzHhyJZ7UoMn6ZpHPFH+fOBDt7c38FbBzsIxfPreKd57Vw+x8dlc31cNruUUqe8PX+2cpPmSktL8+qMAaLR6IBSio6ODrq6ukilUrS0tNDS0jLgMT0ez6CT8Fwul4waCyEKQgJwofQbAc4FYIe7GMJkR4BPQVEUPrS8mkc2HOTZ95vHVQAOv9lM9L1WUKD0joWYy4oKfUhiAuiMJHmzpxfvn/d3cDwQy9vvspm4dHYpl8/xcfncMupKiyRAjaGioiKmT5/O9OnT87ZnMhm6uroGHTWOxWIEg0GCwSAHDx7Mu5/FYhm0nKKkpESWhxZCjCoJwAWiafkBOBrNLq9aVFIFzYB/P0Q6wOE76ePcvGIaj2w4yGsNbQSiSbxFhX+rMd7QRfCP2bdHPTfOwjavuMBHJMareCrD5sbO7CIU+zvY3RzK2282Kpw7vbgn8PpYOs2DaZx3PJmKcotz+HwDX68ikcigk/C6urpIJpM0NzfT3Nw84H5er3dAOYXP58PpdMo/PUKIsyYBuEC0nh6kuTZouRHgIncxlC2E9r3ZUeCFHzzp48yrcLGg0sW+lm5e2tXC7RdOP+ntR1uqPYr/8b2gQdF5FTgvHz+j0qLwVFVjd3OoZ9W1djY3dpFM59fxLqh06WUNF9aV4DiDVdfE+OFwOHA4HAOWhk6n0wNGjXOXRCJBIBAgEAhw4MCBvPtZrdYhR41NJvlZEUIMj7xaFIqa6wKRPwLscDhg+sXZAHz01AEYsqPA+17ex3PvNxc0AKvRFP7H9qDFM1hmuCn+8BwZqZniNE3jaGeMNw9mR3jfOthBVzSVd5tKt02fuHbpnFLKXbJAylTQd+W6vjRNG3LUOBAIkEgkOH78OMePH8+7X27xkP49jUtLS3E4HPJaJITIIwG4QHpLILKnQC+BKCoC5yWw5dFh1QED3LS8iu++vI+3D/tpCcap9Ix9gNAyGv4n9pHuiGH0WCn9i4UoJnmreqrJqBr7WkK819jFu42dvNfYSWsokXcbp9XExbNKuWKuj8vm+JhdJuFE9FIUBafTidPppK6uLm9fKpWis7NzwCQ8v99PIpGgq6uLrq4u9u/fn3c/m82mB+Li4mK9y0VZWZmMGgsxRclvfoH0XwhDL4EoKoLyi7M3an4fklGwnHwCWU1xERfUFbO5sYsXdjTzV1eMfa/d4IuHSOwPoJgNlN61CKOr8LXIYvTFUxm2Hw3w3pEu3j3cydYjXQNWXDMbFVbUerl8ThmXzy1leY1X6njFGTGbzVRUVFBRUZG3XdM0wuHwoJPwAoEA8XicY8eOcezYMf0+//Vf/4WiKJSUlAzavs3hmDwLpQghBpIAXCjq4CPADocDvNPAVQXdJ6B5K9RdfsqH+9CKaWxu7OLZ98c+AEc2txB+MzuJpfhj87FUO8f0+cXYCUSTbDmSG93tYuex4IBevE6riXNnFHNhXTHn15WwvMYr/XjFqFIUBZfLhcvlYubMmXn7UqkUfr9fD8RtbW0cOnSIdDqdt6+hoSHvfna7fdBJeMXFxXrpmhBi4pIAXCBavxrgvBFgRcnWAe/+fbYf8DAC8AeWVvGt53az83iQg+1hZpeNTQhNNAbp+kN2kop79XSKlp68a4WYWI4HYrzX2Mm7h7OBt761e8BtylxWLqwr4YKewLuwyj3lVlwT45fZbKayspLKyuwS7KlUihdffJEbbriBeDw+YAKe3+8nGAwSi8U4evQoR48ezXu83Op6g03Es9vthfgShRBnQAJwgeg1wCYTyWSSdDr7trH+ttv0S3oC8PDqgL1FJpbPbWd393ruePl7+BxOXBaXfnFb3Hmf993ms/mY5pqGQTm9t6XTXXH8v94LGQ37Uh+uqwvbgUKcHVXV2N8WZnNjJ5t7Rnj79+EFmFXm4IIZJVwwMxt6p5dIL14x8SiKgtvtxu12M2tW/rtmyWRSHzHuW2/s9/tJpVL65/0VFRXpHSmKi4vzLjIRT4jxRQJwgfRdCjlX/mA0GnuXDJ3eUwd89F1QM2AY/C23Y93HePbgszx34DmaDc2YPRBVoam787SOx26yM694HgtKFugf53jnUGQevP5YTWTw/2oPaiSFucpB8Ufnocio34SSSGfYdTzIu4e7eK+xk/eOdBGM5XdoMBoUllS7Ob+uhAvqSji/rhifrLYmJjmLxUJVVRVVVVV521VVJRQKDToJLxQKEY1GaWpqoqmpacBjms1miouL8Xq9A8Kx1+uV5aKFGGMSgAulTwDuW/6gjxCULwaLCxIhaNsDlUv1u0ZTUdYdWcezB59lc8tmfbvT7CTYsZhEYBnf/vAKKr0aoWSI7mR37yWV/dh3e1u0jVg6xvb27Wxv364/noLCDPcM5pfMzwvGPquPrt/WkzoRweA0Z5c5lhrPcS8UT7H1SFfPCG8X248GSPTrwWs3Gzl3hpcLegLvilqv9OEVoofBYMDr9eL1epk9e3bevkQioQfjXDeKrq4uAoEAwWCQVCpFW1sbbW1tgz620+nMC8R9A7LL5cJgkImjQowk+ctWIH3boEVD2brKvFnHRhPUXgAHX4Wmt9EqlrCtbRt/OPAHXml8hWg6O2qsoHBx1cXcMucWrp5+NX/79F6eb27mhy+m+fWnL2Jm7alnMqfVNE2hJvZ17qO+q576znrqu+rpiHXQGGqkMdTIK42v6Lf/TNfH+HDLSlSDRuQmOxVuWbJ0PGoNxbNh93A28O5rCdGz/oqu1GHh/LpiPfAuqnZjlg4NQpw2q9VKdXU11dUDF/9Jp9MEg8G8YNz3kkgkCIfDhMPhATXHkH13sH8o7vu5zSa9s4U4XeM+AH/nO9/hmWeeYd++fdjtdi699FK++93vMn/+fP028Xicr3zlKzz55JMkEgmuu+46fvSjHw1olTOeDFYCUVTUr9xg+iVkDr7Krw8+w9PH/kBTd+/batNd07l5zs3cNOsmqpy9b9P93Q0L2HksQKM/ykd/8ha/vOdClkzznPRYTAYTs7yzmOWdxY3cqG/viHXQ0NnAvq597OvcR0NnA9OOeflwy0oAflDxa9a9/zaO3Q6Wly3nnPJzOLf8XJaWLcVukskgY0nTNA62R/T63c2NnRztHFi/O6O0iPNnlHDhzOyEtVk+qUsUYrSZTCZKS0spLS0ddH8sFhsyHAeDQTKZjN6tYjB2u33Qsori4mI8Ho90rRBiEOM+AL/22mvcd999XHDBBaTTab7+9a+zZs0a9uzZo4+YfvnLX+aPf/wjTz/9NB6Ph/vvv59bb72VN998s8BHfxK5LhAmk14CMaDv5PSLedTj5t+TxyAJRaYirqu7jpvn3My55ecOGlymee08/dlLufvRd9ndHOITP32bn37qPC6dffrdGXx2H75pPi6ddikAqZYIrY+8D6gcnt9JrNaEs81JOBXmrea3eKv5LQBMiolFpYs4p/wczqk4h3PKz6HEVnLazy+Glsqo7G4O9YzuZut3OyPJvNsYFFhY5dZHd8+vK6bCLSNFQow3drsdu90+6OhxJpOhu7t7yIAcjUaJxWLEYjGam5sH3F9RFDwez4CAnLvY7Xb5J1hMSeM+AL/88st5n//yl7+kvLycLVu2cOWVVxIMBvn5z3/O448/ztVXXw3Ao48+ysKFC3n77be5+OKLC3HYJ6WqGf36yUaAW4tr+anXDcD9Cz7JJ8+9f8hJaX2Vuaw8+ZmL+cyvtrDpkJ+7f7GZ/7h9BdcvqTrlfYc85nga/2/2QkrFOtfL5Z+6nCuMN5NRMxwIHGBr21a2tW5jS9sW2qJt7OjYwY6OHTy25zEA6tx1nFtxLueWZy81rhp50T0N4USa95sC+upq25oCxFKZvNtYTQZW1Hq5cGYJ59eVcO50Ly6blKcIMZHlyh+8Xu+AHseAvgJeIBAYNCBnMhkCgQCBQIDDhw8PuL/FYhkyHHs8HsxmeQ0Rk9O4D8D9BYNBAEpKsiOKW7ZsIZVKsXr1av02CxYsYPr06WzatGnQAJxIJEgkepdnDYVCQLY/ZCqVGnD7kZaIx/XrGVWjuztbA2yz2fKe//vbf0LMYGB5PMFfmmsA87CPz2aEn/3FCh74352s3dPG5/9nK9+6aRGfuKDmtI9X0zSCv91PuiOGwWPBfdts0moaeuZPzXLNYpZrFh+Z/RE0TeNE9ATvt73P++3Zy4HgAb2W+Jn9zwDgs/lYUbaCFWUrOKf8HOZ652IyTLgfR13uvIzEz088lWFvSze7jofYeTzIzuMhDnZE0PrV73rsJs6bXsz5dV7On17M4mo3ln7LT4/Fz/NkNpLnVYwPk+2cGgyGIcsrcivk5cJxLgjnPg+HwySTSVpbW2ltbR308V0ul15OkQviuYvT6Rw3AxmT7byKwc/pSJ5fRdP6/1kdv1RV5UMf+hCBQIA33ngDgMcff5x77rknL9ACXHjhhaxatYrvfve7Ax7nm9/8Jt/61rcGbH/88ccH1uGOAjWV5NDT2ZHRWR+7h8amJoLBILW1tfh82VKFpnQTPw3/FEWDJ5pbKHJdxo7p95z+c2nw9CEDb7Vlg9EHajNcO03jdF6zyptt1B4pQlU06heHiLoyp75TH1E1SlOmiSPpIxxJH+F45jgZ8h/DgoVaUy0zTDOoM9ZRY6rBokz+tkBpFU5EoSmicDSs0BRWOBEFlYEnqNiiMcutMdutMculUWHPljkIIcSZUFWVZDJJIpEY9KOqqie9v6IoWK1WLBbLgI8Wi0Vqj8WIi0aj3HHHHQSDQdxu91k91oQacrvvvvvYtWuXHn7P1IMPPsgDDzygfx4KhaitrWXNmjVn/Q0dju6uLj0A3/iBD/Dr3/yGYDDIhRdeyIIFC1A1lU++8kkAPlR2Posbn0ELvUvNpf8PvKe/2MQHNI0frD/Ij147xB+PGimdNp3/e/18DMNIT8nGEF3v7AHA84GZrLyo8rSfv79EJsEe/x62tW/TR4nDqTAH0wc5mD4IZCfmLSxeqE+sW1G2Ardl9M/NmUqlUqxbt45rr712yLcM0xmVg+0RdhwPsas5yK7jIfa2dJPKDPwftNRhYek0N0unuVkyzcPSajdlLum/O9aGc17FxCLndHg0TSMajQ4YNc51swiFQmiaRjweJ97nXc2+HA7HgFHj3EjySLd2k/M6+Qx2TnPv2I+ECROA77//fl544QVef/11amp638avrKwkmUwSCATwer369tbWVn3py/6sVitW68AwYTabx+QXp+8ysRarVa8BdrlcmM1mntn/DHs79+I0O/nSyu9BawtK01uYX/kq3Pm/nNbwbY+v3rCQMreNbz2/h1+93UQgluZfP7p8wFvmfWW6kwR/ewBUsK8ow33ZyNTtms1mLpx2IRdOuxAAVVM5EDig1xBvbd1Ka7SVnf6d7PTv5Fd7f4WCwpziOZxbfi7nVZzHueXnUuEYf10+cj9DqqpxqCPCzuMBth8NsvN4kN3NQeKpgSMqHruZZTUeltV4WDrNy7IaD1Ue27h5a1GM3WuDGDtyTk/NYrHk/V3tK5PJDNnaLRAIEIvFiEQiRCIRjh8/PuD+uZ7KQ7V2O9NlpeW8Tj59z+lInttxH4A1TeMLX/gCv//979m4ceOASQDnnXceZrOZ9evXc9tttwFQX19PU1MTl1xySSEO+ZQyPcseG4xGFEXRA7DD4aA72c2/b/13AD67/LP4HGXwof+AH18KB/4EO/8Xln30jJ73nstmUuKw8JXfbue57c0EYil+8hfnUmQZ+GOgZTQ6n9iH2p3EVF5E8a1zRy2QGRQD84rnMa94Hh9f8HE0TaM50syW1mwY3tK6hcZQI/u79rO/az9P1T8FwDTnNM6rOE8PxDPcMwoSGtMZlQNtYbZ2KOx4uZ7dJ7L1u+FEesBtnVYTS6a5WVaTDbrLpnmpLZFZ2EKIicVoNFJSUqLPx+kvFosNOTEvEAigqiqdnZ10dg6+aqnNZht0Yp7X68Xj8WAyjfv4MvmoGYgH+1wC2Y+u6uy6BRPMuP8Juu+++3j88cd59tlncblctLS0AODxeLDb7Xg8Hj796U/zwAMPUFJSgtvt5gtf+AKXXHLJuOwAAfk9gDOZjP72UVFRET/a/iM6453Uueu4Y8Ed2Tv45sJVX4VX/wle/hrMvhocg/eTPJWbV0zDYzfzud9s5fWGdu742Ts8evcFFDvy621D6xpJHAqiWIyU/sXCMV3pTVEUpjmnMc05jQ/N/hAA/pifbW3b2NK6hS2tW6jvqud4+DjHw8d57uBzAJTaSvVOE+dVnMe84nkYh1hC+kyoqsbRrij1Ld3sbwtT39JNQ2s3h9ojJDMqYIT9R/Tb28wGllR7WNozurusxsvMUsewSk+EEGIiy7V267+cNGRrj0/W2i0SiRCPxzlx4gQnTpwYcH9FUXC73XnB2O126xP+iouLJSAPRtMgFYVYID/AxoN9tvXZ3n9bYojyg+V3SAAeDT/+8Y8BWLlyZd72Rx99lLvvvhuAf/u3f8NgMHDbbbflLYQxXqmZ3AiwSR/9VRSFE8kTPL73cQC+esFXMRv7DPVf+kXY9Xto2w2vfB1u/a8zfv6V88t5/N6LuOeXm3n/aIBbfvQmn7qkjg8uq6LCbSO2x0/3xmMAFH9kLuby0Z8YeCql9lJWz1jN6hnZbh/hZJjt7dv1QLyrYxf+uJ91R9ax7sg6ILs09PLy5ZxXfh7nVpzLEt8SrMZT19FqmsaJYJz61m4aWrppaA3T0NrNgbbwgNZjOUUWI2WWNJcvms7y6cUsq/Ewp8yJSVZVE0KIPAaDAY/Hg8fjoa6ubsD+XFnjUAE5t7JeMBiksbEx77779+8Hsu+out3uk14mZKlEJtUvnHYNEmIDQ29TB74zedrMRWDzgs0Ddi+UzDr7xyyAcR+Ah9Okwmaz8cgjj/DII4+MwRGdvUwmG6L69gC22+3865Z/Ja2lubLmSq6ouSL/TiZLthTiv1fDjiezZRBzVvd/6GE7Z3ox//vZS/jkz9/liD/KP76wh3/64x5urCnmb1tUTIDzsmqKlpWd8XOMJqfFyWXTLuOyaZcB2Yl1uzt2s7VtK++1vsf7bdmJdW8ef5M3j2cXRLEYLCz2LWZ52XKWly1nmW8ZqG72t/aO5ja0drO/NUz3IOULABaTgTllTuZXuphX4WJehZN5FS7KHSZefvklbrxx4cR8URVCiHHCYrFQXl5OeXn5gH251m79ex93dnbS0tJCJpMhk8no9ceDjSDn2O32U4bkweYLnRVVhWT38EZcBwuxqejZH4PB1BtgcyE2d71vsNW3Ffdus7qzeWQSGPcBeDJS070jwLlV4Ew2E28efxOTwcTfnv+3g9+x5ny46LPwzo/hhS/D598Gi2Pw2w7DnHIXL33xCp59v5nntjez80gXtx1NYsLILjI83d7BjVusrFlcMe4XVLAardnyh4pz+aulf0VGzdDQ1cDWtq28c2IzW1u3Ekx2sa1tG9vatun3U5NeMrEZZGLTycSmo8arABMmg8JMn4N5lS7m9wm600uKBh3Vld6TQggx+hRFweVy4XK5mD69tytSKpXixRdf5IYbbiCVShEKhU56SaVS+gp6Q/VAhuyk+b6B2OVy4XbYcdsMuM0abnMKuxpFSfQNq4Ghg20iBNrJ28sNi9U9RIgdxjZz0RlNpp9sJAAXgJobATb1jgDTky8Xly6mzlM39J2v/nvY9wIEmmDDt+G6/++sjsVbZOGuS+u469I6jj2+B3b4CRngH9Qo7Q0R1jd0YPm9gavnl3PT8mquXlCOfQzrgU9G0zRC8TQtwTgngjFagnFaQvGez+M9n5cRjF0LrEaxdGC0H8FoP4rRfgSDtRWDJYDBEsDs2Q6ASbEwx7OAC6rO4dyKFSwvq6WsaHyOggshhMinKAoOhwOHwzFo/TGAlk4RD3UQ8jcT8rcTCnTSHQoSCkcIReKEYmlCCY14RiGRSNDe3k57e/uQz2kihZswbrp7Pva/HqaIKHlDJybbSUZcvScPsTYPjOD8lqlKAnAB9NYA9wbgtCm7rdo5cC34PFYnfPDf4H8+Am//CJbcCtPOO+tjimxugR1+UGDWXy7hSY+ZF7af4LntxznYHuHl3S28vLsFh8XI4moPRVYjRRYjdrOJIosx+3nPdbvFiMPau6/v9extTdjNxrx2cAO+R6pGZzTZJ8zGaAn1CbY9YTeaHN6iHEUWE5WeOmaULNJHdWtLjUSVw+zr2sn29u3s6NhBMBFkX2AH+wI7+PXebK/makd1tmyiPFs2saBkQX59thBCiLGVTmZHWGNdEO1ECbdT6/8zhnePQip80npYJdmNHbADJ2ummcBMN05COAnh6vnY97qLKHbSmOmkmE6Kh3wsg0HB7SjC7Xbh9hTj9hYPKLdwOp0j2htZnJwE4ALIjQAb+5RAxA3ZThDTnNNO/QBzr4WlH4WdT8Nzfw2f2QhnEciSzWG6ns0uQOFeMwPbnGJmA19cPZe/vmYOe0908/yOZp7f3syxrhjvNg7etuZ0WU2GnlDcG46NBoW27gStofigC0QMxltkptJto9Jjo8pjo9Jtp8pjoyL3uceGy2oaotVYFVdNvxTIjig3hhqzYbh9B9vbt3MgcIDmSDPNkWZeanwpe9xGK4tKF+m1xMvLluM1e0fkeyKEEFNKJpUNprEuiHX2fMyG2sG39dw22Z33MCbgXICm03hui/MkI64erDYvVpsH32Cjs1YXKAqpVIru7u6TlluEw2FUVSPQHSHQHYHjLYMejqIoOJ3Ok9Yku1wu6XAxQuS7WABqeuAkuG6yv8ynHAHOuf6f4cB6aN0Fb/0Qrnjg1PcZ7Fhiafy/2QtpFduCElxX1ebtVxSFRdVuFlW7+ep189lxLMixrhjRZJpYKkMkkSGWTBNNZogke69n9/W93rMvlSE3rzGRVkmkVbqig9fPKgr4nNZsmHX3htnez+1Uum0jVpKhKAozPTOZ6ZnJLXNuASCSirCzYyfb27bnjRL3ryWuclThS/rw7/WztHwpC0sW4rQ4R+S4hBBi3Muk80Zk9dB60lAbGLq11rAo2TBaVIJq9dAeTlNWOxtDUckpSgm8YHOf1cBRjtlsPmk/ZMhOfO/u7j5pUO7u7tbbw3V3dw+6eEjOqTpcuFwuLJbJMVFtNEkALoBMTwmEYjTqI8ABNQDANMcwRoABHD64/jvw+/8DG/8ZFt0MpbNP6zg0TaPz6QYynXGMxVZKPjYP5SRlCYqisLzWy/Ja72k9T//nTKTVfuE4TSyZIZrMkMqolLmsVHpslLtsJ12pbiw4zA4urrqYi6su1o9/sFHiE5ETnOAEO7ft1O9b565jYelCFpcuZlHpIgnFQojxT82cYkR2iFHZRPDsntfmAXsJ2Iuzl6Lc9cG29Vz61MJmUinefvFFbrzxRgzjrBOP0WjUl4IeiqqqRCKRU07eO5sOFy6XK+9zm802Cl/txCEBuAA0NVcC0TsC3JZpA05jBBhg2cdhx1Nw8NVsKcRdz8Np1A+F32gmvscPRoXSOxdiKBr9Fw1FUbCZjdjMRs5sKY/CGmqUeFvLNn731u9Qy1T2du7lROQEjaFGGkONvHT4Jf3+de46FpUuYlHpIhaXLmZh6UIc5jPv5CGEEIPKrdo1rBHZPtvjZxlkrR4o6hNShxNqZVIXBoNB724xbdrgA2GaphGNRkesw4XFYjllGzi7ffKuVCoBuAB6SyB6F8IIEwagyjn4rNVBKUp2QtyPLoEjb8C2X8N5dw3rrommEMGXDgPgvWkWlhrXaXwFoi+H2cFFlRfht/m58YobMZvNdMY72evfy27/bvb497DHvycvFL94+EUAFBRmuGew2LeYRSXZYCyhWAihU9Xe0oJYoDeonirUxoPA8OZRDMrqzh9tzRt9HSLU2jxglFgxWobV4ULTSCQSpwzJ8XicZDJJR0cHHR0dQz6nyWQ6ZUguKiqakJP35Ce1APouhJErgUgYEpTZy4a1Ulme4jpY9X9h7f+Fdf8A864DV+VJ76JGU3Q+vg9UDfsyH46LTiN0i2EpsZXkLdQB0Bnv1MPw7o7d7OncQ0ukRQ/Ffzz0RyAbius8dfooca58oshc+BX5hBBnSFWzZQJ6UO0aGGAHDbUBzirIWlw9QfVk4bXfdrt3ROpjxdhTFAWbzYbNZht0IZGcZDJ5ypAcjUZJp9N0dnbS2Tn05Pf58+dz++23j8aXM6okABeAqtcA944AJ4wJZjhnnNkDXvRZ2PW/0LwNXvoqfOxXQ95Ur/sNJDCV2ii+de6kfXtjvCmxlXD5tMu5fNrl+jZ/zK+H4j3+Pez276Y12srh4GEOBw/nheLp7unM8c5htnc2c71zme2dTZ27TlqyCTGWNA2SkWxAjXYODK/9J3rpI7KBs1sAweLMH5Edbp2svD6IQVgsFnw+Hz6fb8jbDNbhYrDPXa6J+Q6yBOACyLVB04xGtFT2P/ukMTn8CXD9GU3woR/Cf10Fe56FvS/Awg8OetPwG8eJ7+0Ek0LJHQsx2ORHoJBK7aVcUXNF3tLXuVDct3yiNdrKkdARjoSOsL5pvX5bk2JihnsGs72zmeOdw5zibECe7pqOySDnVoiTynUuyAXZIT925X+eSZ75c5od/UZkh1Enay+eNMvPioljuB0u0j2r20408heyAHIjwFquZsYEqqKe3gS4/iqXwmV/DW/8G7z4N1B3WfZFs49s3W8jAN4PzsYyTToSjEeDheKOWAcHAgc40HUg+zFwgIOBg4RTYQ4GD3IweJC1R9bqtzcbzMz0zMwbLZ7jncM05zSMU3yyiZiEBhuVzRuR7d1ujPhZ7T+Oac/9Z9eCy2jJhtSikp6PfUJrbttgo7Km0yxzE2IcMxqNGI0T82+KBOACyE2CyxiMQIaMKfv5WQVggKu+lh0B7jwEP74s2yZt4YdAUQap+z15nbAYX3x2Hz67T2/HBtlyltZoqx6G93ft52AgG4Zj6RgNXQ00dDXwEr1dKGxGGzM9M5lb3BuK53jnUOWoklIYMT5k0r0lBP1HYvMC7ZmNyhqAAVNMbZ7eUVc90Pb9WDxwu8WRnYgshJiQJAAXgD4CrBiAzOmtAncyZjt85FF4+i7oaoTffgrmrEa7/rt0vpCQut9JRlEUKh2VVDoq8+qKVU2lOdycDcWBnlDcc4ln4uzt3Mvezr15j1VkKtIDcd9R4/KicvlZEWfmNEZl80Lt2fSTHWpUtk94TVvcbHq/nouv/gBmd3l2UQTpXCDElCO/9QWQqwFOkw0WESXbCeKsR4ABqlfA59/OlkK88W9w4E+E/+M7xJN3Z+t+75S638nOoBiocdVQ46rhqtqr9O0ZNcOx8DG9jCIXkBtDjUTTUXZ27GRnx868x3KZXXpdcW60eLZ3NqW2UgnGU8nJRmWHCrexrrOrlc0tjDDUiOwZjspqqRSdBzTwzYVxtmCCEGLsSBIqgFwAzvQE4KiS7QRR5RihdmRmO6z6Oiz9GIn//VeCjR8HwOt4Aks0AVwzMs8jJhSjwcgM9wxmuGdwzYzen4GUmqIp1KSH4lyNcVOoie5U94BlnwGKrcXM9s4eUGPstXnH+KsSp0XTIBk+xYhs/6B7tqOy1vya2EFGZQd8lFFZIcQok1eYAugNwFkJYwKf3YfNNLLLEmbsM+js+ksggd3yDo74b+A3v4FFt2Trg90jMOIsJjyzwayH2b6SmSSHg4fzQvGBwAGOdR+jK9HFe63v8V7re3n38dl9A0LxbO9sXJaJ2SZn3NI0SEX79Iwd4jJYwFVTZ/68pxqVHWy7uUhqZYUQ444E4ALI1QDnGockDcmRKX/oQ1M1up5uIBNMYPLZKf6rT6O83Qnv/AT2/AEO/AlWPggX/R/pEykGZTFamF8yn/kl8/O2x9IxDgcP94biruzIcXOkmY5YBx2xDt458U7efXx2HzXObFlGras2W6LhzF732X1Tt5xC0yDRfYogG+j3+QiUF/QdlT1ZeO3b1UBGZYUQk4i8mhVAbiW4dE9P9IQxwWzH7JPc4/SF/3yc+L5cv98FGLxOuP7bsOJ2eOEBOPZudvW49x+HG74LdZfLKI0YFrvJzqLS7LLNfUVSEX2yXW7y3YGuA7TF2vRg/H77+wMez2a0Mc05bdBwXO2sHvF3RkaFmskuPTtoYD3FRcuc8uGHZDAPXByh72peMiorhBCDkgBcALkSiJSaTcAJY2JER4ATR0IEXzkMgPem2Viq+/T7rVwKf/kKvP8bWPcNaNsNj30Q3DUw/3qYdwPMvEJ6VYrT5jA7WFa2jGVly/K2h5IhjoaOcjR8lGPdx3ov4WOciJwgnonrvYwHU24v1yf19Q3HNa6akZ2MlysriAf1ixLuoKbzTQzvHoVkaOgSg3iQs1qu1mQbuBTtkMG2z0VacQkhxBmRAFwAas+qKaMRgDORFJ2P7wUV7MvLcFw4SL9fgwHO/RTM/wC8+jBsfwpCx2Dzf2cvFifMXgXzb4S5a8Ax9FKJQpyK2+JmsW8xi32LB+xLZVKciJzQA/HR7qN51yOpCG2xNtpibWxt2zrg/naTXQ/FNa4aaouqqbF6qDG5mGawYklGsiOyeqgN5AXc/H3BAfWxJuA8gCPD/GL15Wq9wwuwuYvZflrfUyGEEGdHAnAB6CPAmWwAThqSZ98DmJ6639/Wkwkms3W/t845+eiYoxRu+ne4/p/h8OtQ/yLUvwzhFtj7fPaiGKDmQph/QzYQ++bKiJMYMWajmenu6Ux3T89uyJUSxANosQCBcDPHgkc41n2Mo9EWjsX9HEsFOJqO0KoliaVj7O/az/6u/QMeW9E0KjIZalJpatJpans+5q57VZVBf5IVYzbA2jyoVjcd4TS+2rkYHKUnD7E2ryxXK4QQE4QE4AJQM2k0xYCqZd8yHakR4O6NR4nXd4HJkK37tQ7z9JrtMO+67OUDKpx4Hxpezgbilp1w9O3s5U8PQcksmH4pFM8A74yej9PBWZkdWRZTl5rJTuhKhiERzn7MXU+EBo629h2Nze1LdusPpwDFPZelgzxdEmg2mThqNnHMZOJYz8fs52ZiBoUWk4kWk4n3Brm/w2ChxlZKTVEFtc5aajwzqPHOprZ4LlXOasxGM5lUik0vvsiNN96IQXrGCiHEpCEBuADUTAbNlP3WZ5QMaSV91j2A4we6CK3Lvk9bfEu/ut/TYTDAtHOzl1Vfh8DRnjD8EjT+ObvMcuehgfczWsFbmw3DfYOxty57vahURo7HG1WFVKQ3rPYPr3mfR7LhNNEn1Pb/PB0buWMzO7Itt3KXnhHZ7CV73WLzUGfzUNd/n9WFphjojHdmSyrC2ZrjvuUVbdE2ImqS+ugJ6qMnoOP9vKc3KAYqiyqpdlaTiWQ4vP0wVc4qyovKKXeUU1FUQYmtBIMi//QJIcREJAG4ANRMBq2nnVDCkMBXdHY9gDPBBJ1P1IMGRedX4Dh/kLrfM+WthQvvzV4S3XBoI7Ttha4jEOi5BI9DJgH+A9nLYMyObCDOjRz3v273jtwxT1a5SVr9R1dPGV77BNZkJP/+o8FgytbCWl09H51gdQ8ZZPXruX1W91mXEihAqb2UUnspK8pXDNgfT8dpDjfn1x33hONj3ceIZ+I0R5ppjjQDsG33tgGPYVJMlBWVZUNxUTYU971eUVRBuaMcq1EmlAohxHgjAbgA+gbgpDFJtePMyx+0jIr/8X2okRTmSgfFN49sO7U8VhcsvCl76SuThtDxbBjWg3FT7/XuE9mRxva92ctgbJ5sGPbUZGe2m6zZmfEmW5/rw/04yDaDaegRaE3Lvn2vqdmWVHnX1SG2Z7L3y11PJfBEG1GOvQtaCtIJSMchFc9+TCeyI6TD3t5nf6pnfyqSff6RphjA4soG1VxgtTgG2XaSzy2O3sBrso770X6bycYs7yxmeWcN2KdpGh2xDo6Fj9HY1cjr779OcW0xHfEOWqOttEXb8Mf8pLU0JyInOBE5cdLn8lg9ejCuLKrUr/cNzV6rd+r2QhZCiAKQAFwAaiaNZsrWEyYMZ1f/G3y5keSREIrVSOlfLEQxG0fqMIfPaMqO5hbPgJmD7E/FIXgMAo35wbirJyhHO7L1ny07spfRoBiyQVgx9ITXnjCrZjir9lU9zMBKgPqzfqjhsfQNov1GW08VUPvfx2wf94F1LCmKQllRGWVFZSwpXoJhn4EbL7gRc58a4JSawh/z0xptpTWSDcVt0TY9IOeuJzIJgokgwURw0Il6ORaDZfCRZEeF/nmZvQyzLFojhBAjQgJwAWT6lkAYE8xzzjujx4nt6iD85+MAlHx0HibfOG2lZLaBb072MphEOBuEA03ZkeTcaOjZfswkep9DU7PlA2dKMfRcjGAw9rme3a4pRuLJFDaHB8Vsz46C5j7qo9K27PdCH5nus99sy7/dYPe3OHoCa5FMOCwws8FMpaOSSkcllA1+G03TCCVDA0Jx38DcFm2jK9FFUk1myy/Cx076vCW2kt7yikFGkiscFTjNThlNFkKIU5AAXABqOj8An0kLtHRHjM6nGwBwXjEN+5IJ3KvX6oSKRdnLSFLV7HKxfUsNNC0bXg3GbIDVrxtOvv0UgSKdSrG2p1uAWboFCLIjyR6rB4/Vw7ziof/JTWaSg44e69cjrbTF2kiraTrjnXTGO9nbOUQpEdneyLlAXGIrwWv14rV5sx+tXoqtxXhsHv263WSXwCyEmHIkABdAtgSipwbYkDztEggtlcH/P3vREhksM9x4rq8bhaOcBAwGMPSMrgoxTlmMFn2Vu6GomkpXvCt/JDmaP5LcGm2lO9lNLB2jMdRIY6hxWM9vNpjzQvGAyyDh2WV2SWgWQkxoEoALQO1XAnG6Abjr2YOkTkQwOMyU3rEAxShvhwsxmRkUg97VYmHpwiFvF01F8wJxV7yLQCJAMBGkK9HV+zGe/ZhSU6TUlL7a3nCZFBNuqzsvKBfbivFYPUNuc1vcGA0FmKMghBCDkABcAGomjdozmSVhTJxWF4jI5hai77WCAiW3z8fokRZLQoisInMRdZ466jx1p7ytpmnE0jECiYAeivXriSBd8ezHQCKQd4mlY6S13nKM4VJQcFvd2VFkq0f/2HeUuf82j9WD2SAlRUKIkScBuACyC2Fk+5za7LZh9wBONofpevYgAO5rZ2CbUzxqxyiEmNwURaHIXESRuei03oVKZBIE4r2BuG94HmpbOBVGQ9M7YpwOl9k1ICifbNTZa/NK72UhxClJAC4ANZNBM2e/9cWu4YVYNZ6m83/2QlrFNr8Y18ra0TxEIYQYlNVozbZnc1QM+z6pTIpgMpgXnPXLYNsSAUKJEBoa3aluulPdp+yQ0ZfdZB+yjtllcnE4eZiSEyWUOkr1UWeZDCjE1CIBuAAymUy2dy5Q5hmih1IfmqbR9XQDaX8co9dK8cfmoxjkhVoIMTGYjWZ8dh8++/C71WTUDKFk6ORBud+2YCJIRssQS8eIpWMnXaTk6Q1P531uMViGLMUYatRZWs4JMXFJAC6AtJpdzUtDo6q46pS3D7/RTGy3H4wKpXcuxOiQmjghxORmNBgpthVTbBt+qZeqqYRTYX2S32BBuSvWxcETBzE6jXqNc0pNkVST+gTC4TIppmw9c79SDKfZSZG5CIfZgd1kz143ObIlJ6bs9iJzkb5P6pyFGHsSgAsg3bPwWEpJnrT1EUD8YIDgS4cB8H5wFpZa12gfnhBCTEgGxYDb4sZtcVPL4GViqVSKF/v07M5NBtQDc/+R5nj+CHNukmBuMqA/7scf95/VcVsMFj0c5+qy9aBsKsrf1/Mxb19ue5/bSMcNIU5OAnABpHIB+BQ9gFNtUfy/3guqhn1FGY6LTz1aLIQQYvj6TgY8nUWJ4ul4XigOJAL6yHM0FSWajhJJRfTrfT9G0tntKTUFQFJNkkwkCSQCI/Z12Yy2AcE5b+S5z+e563azfdDg7TA7sJlsGBRpuSkmDwnABZDp+ZhUhu4BnOlO0vGLXWjxNJYZbkpumyu1ZkIIMU7YTDYqTT3LYZ+hVCY1ZDjWtw9jXyQV0bdltOxfmHgmTjwTp5Pht6o7FbvJPvxR6aH29Rm1thlt8ndNFIwE4AJIk/2FTxqSg/YAVpMZOh7bTSaQwFRqo/RTi1DM8naWEEJMJmajGY8xu1z2SNA0jZSaygvEueuxVCwvQOdGp2Pp2MmDdzqKqmXnreQmF44Ug2LIC8V6wO47Kp2roT5FuDZrZpJakrSaxozUVItTkwBcAJncf7xmBvQA1lSNzif2kToWxlBkovSeJTLpTQghxCkpioLFaMFitFDMyPSJ1zSNeCY+eClHn6A93H2RVEQP0blJi+FUGEYoVz/85MMYFaP+fbAarL3Xjb3XT7bParRiMZz5dqvRislgktHtcU4CcAGoPXVUFtvAYBt84RDxvZ1gUii9azFmn32sD08IIYQAsqHabrJjN9kppXREHlPVVOLp+IA66bzR6sFGsXOj1YOE63gmrj9+31Z4haSHZMMggfkU2wcN2WcQ3KVue2gSgAtAM2S/7UVFRXnbu984TvitZgBKPjYf6wz3mB+bEEIIMZoMikGvAz6d3tAnE0/Eef6l51m1ehWqQSWZSZLMJElkEtlJhj3XE5kEqUyq97qaOun2vMfJXVcH355Uk3nHlHusQjIZTPqotNlgPu0gPpztZUVlzPLMKujXeSYkAI8xTdPQjNl6XrczG3DVRIbgS4eJvJ1t2u65YSZFy069QIYQQgghsn2jLYoFj9WD2VyYskFVU7M9pfsH5tx1dejtpxPQT/ZYiUwCDU0/prSaJq2miaQio/Z13zjzRr575XdH7fFHy6QJwI888gj/8i//QktLC8uXL+eHP/whF154YaEPawA1k0YzZn85S70+EocCdP7vfjKd2bdvnFfV4Lxy+K14hBBCCFF4BsWgj7a6KEzPfk3TSGvp0xq5Hk5Azxvp7hvW1RRVjonZonVSBOCnnnqKBx54gJ/85CdcdNFF/OAHP+C6666jvr6e8vLyQh9eHjWdQTNlv+0Lm2po37ATILvE8UfmYpszMhMXhBBCCDG1KIqCWTFjNphxmB2FPpxxbVIE4O9///vce++93HPPPQD85Cc/4Y9//CO/+MUv+Lu/+7sCH12+RCSCZsx+28sPZjtAGCvTmGfFiDRsJtJQyKMTZ0rNZCjasYeAwYLBKC3rJgs5r5OPnNPJSc5r4ZgrK3Gds3TCdb2Y8AE4mUyyZcsWHnzwQX2bwWBg9erVbNq0adD7JBIJEonewvRQKARkl8hMpVKjerzN7+yDnh8SVTXzVjRN+z4N9k34UzHFmYCLaDhe6OMQI0vO6+Qj53RykvNaOB3c868JzNaR/ccjl8f65rKRzGgTPnV1dHSQyWSoqKjI215RUcG+ffsGvc93vvMdvvWtbw3Yvnbt2gGdGUaav+UIZSknSVK8HlJJj+qzCSGEEEKMrldeeQXDKCXKdevW6dej0eiIPe6ED8Bn4sEHH+SBBx7QPw+FQtTW1rJmzRrc7tFtPaZpGtFgjA2vb+Tqqy8o2GxVMbJSqRSvvvoqV199tZzTSUTO6+Qj53RykvNaWCaLYcRLIFKpFOvWrePaa6/Vz2nuHfuRMOEDsM/nw2g00tramre9tbWVysrB12i3Wq1YrdYB281m85j84iheBYMJipw2+UWdJFIpo5zTSUjO6+Qj53RykvM6efXNZiN5bif8EiEWi4XzzjuP9evX69tUVWX9+vVccsklBTwyIYQQQggxHk34EWCABx54gLvuuovzzz+fCy+8kB/84AdEIhG9K4QQQgghhBA5kyIAf/zjH6e9vZ1vfOMbtLS0sGLFCl5++eUBE+OEEEIIIYSYFAEY4P777+f+++8v9GEIIYQQQohxbsLXAAshhBBCCHE6JAALIYQQQogpRQKwEEIIIYSYUiQACyGEEEKIKUUCsBBCCCGEmFIkAAshhBBCiClFArAQQgghhJhSJAALIYQQQogpRQKwEEIIIYSYUiQACyGEEEKIKUUCsBBCCCGEmFIkAAshhBBCiClFArAQQgghhJhSTIU+gPFA0zQAQqHQmDxfKpUiGo0SCoUwm81j8pxidMk5nZzkvE4+ck4nJzmvk89g5zSX03K57WxIAAa6u7sBqK2tLfCRCCGEEEKIk+nu7sbj8ZzVYyjaSMToCU5VVZqbm3G5XCiKMurPFwqFqK2t5ejRo7jd7lF/PjH65JxOTnJeJx85p5OTnNfJZ7Bzqmka3d3dVFdXYzCcXRWvjAADBoOBmpqaMX9et9stv6iTjJzTyUnO6+Qj53RykvM6+fQ/p2c78psjk+CEEEIIIcSUIgFYCCGEEEJMKRKAC8BqtfLQQw9htVoLfShihMg5nZzkvE4+ck4nJzmvk89on1OZBCeEEEIIIaYUGQEWQgghhBBTigRgIYQQQggxpUgAFkIIIYQQU4oEYCGEEEIIMaVIAB5jjzzyCHV1ddhsNi666CLefffdQh+SOA3f/OY3URQl77JgwQJ9fzwe57777qO0tBSn08ltt91Ga2trAY9Y9Pf6669z0003UV1djaIo/OEPf8jbr2ka3/jGN6iqqsJut7N69Wr279+fd5vOzk7uvPNO3G43Xq+XT3/604TD4TH8KkR/pzqvd99994Df3euvvz7vNnJex5fvfOc7XHDBBbhcLsrLy7nllluor6/Pu81wXnObmpr4wAc+QFFREeXl5fzt3/4t6XR6LL8U0WM453TlypUDflc/+9nP5t1mJM6pBOAx9NRTT/HAAw/w0EMPsXXrVpYvX851111HW1tboQ9NnIbFixdz4sQJ/fLGG2/o+7785S/z/PPP8/TTT/Paa6/R3NzMrbfeWsCjFf1FIhGWL1/OI488Muj+733ve/zHf/wHP/nJT3jnnXdwOBxcd911xONx/TZ33nknu3fvZt26dbzwwgu8/vrrfOYznxmrL0EM4lTnFeD666/P+9194okn8vbLeR1fXnvtNe677z7efvtt1q1bRyqVYs2aNUQiEf02p3rNzWQyfOADHyCZTPLWW2/x2GOP8ctf/pJvfOMbhfiSprzhnFOAe++9N+939Xvf+56+b8TOqSbGzIUXXqjdd999+ueZTEarrq7WvvOd7xTwqMTpeOihh7Tly5cPui8QCGhms1l7+umn9W179+7VAG3Tpk1jdITidADa73//e/1zVVW1yspK7V/+5V/0bYFAQLNardoTTzyhaZqm7dmzRwO0zZs367d56aWXNEVRtOPHj4/ZsYuh9T+vmqZpd911l3bzzTcPeR85r+NfW1ubBmivvfaapmnDe8198cUXNYPBoLW0tOi3+fGPf6y53W4tkUiM7RcgBuh/TjVN06666irti1/84pD3GalzKiPAYySZTLJlyxZWr16tbzMYDKxevZpNmzYV8MjE6dq/fz/V1dXMmjWLO++8k6amJgC2bNlCKpXKO8cLFixg+vTpco4niMOHD9PS0pJ3Dj0eDxdddJF+Djdt2oTX6+X888/Xb7N69WoMBgPvvPPOmB+zGL6NGzdSXl7O/Pnz+dznPoff79f3yXkd/4LBIAAlJSXA8F5zN23axNKlS6moqNBvc9111xEKhdi9e/cYHr0YTP9zmvM///M/+Hw+lixZwoMPPkg0GtX3jdQ5NZ3lsYth6ujoIJPJ5J0wgIqKCvbt21egoxKn66KLLuKXv/wl8+fP58SJE3zrW9/iiiuuYNeuXbS0tGCxWPB6vXn3qaiooKWlpTAHLE5L7jwN9nua29fS0kJ5eXnefpPJRElJiZzncez666/n1ltvZebMmRw8eJCvf/3r3HDDDWzatAmj0SjndZxTVZUvfelLXHbZZSxZsgRgWK+5LS0tg/4+5/aJwhnsnALccccdzJgxg+rqanbs2MHXvvY16uvreeaZZ4CRO6cSgIU4DTfccIN+fdmyZVx00UXMmDGD3/72t9jt9gIemRDiZD7xiU/o15cuXcqyZcuYPXs2Gzdu5JprringkYnhuO+++9i1a1fenAsxsQ11TvvW3S9dupSqqiquueYaDh48yOzZs0fs+aUEYoz4fD6MRuOA2amtra1UVlYW6KjE2fJ6vcybN48DBw5QWVlJMpkkEAjk3UbO8cSRO08n+z2trKwcMHE1nU7T2dkp53kCmTVrFj6fjwMHDgByXsez+++/nxdeeIENGzZQU1Ojbx/Oa25lZeWgv8+5faIwhjqng7nooosA8n5XR+KcSgAeIxaLhfPOO4/169fr21RVZf369VxyySUFPDJxNsLhMAcPHqSqqorzzjsPs9mcd47r6+tpamqSczxBzJw5k8rKyrxzGAqFeOedd/RzeMkllxAIBNiyZYt+m1dffRVVVfUXajH+HTt2DL/fT1VVFSDndTzSNI3777+f3//+97z66qvMnDkzb/9wXnMvueQSdu7cmffPzbp163C73SxatGhsvhChO9U5Hcz7778PkPe7OiLn9Awm7Ykz9OSTT2pWq1X75S9/qe3Zs0f7zGc+o3m93ryZjGJ8+8pXvqJt3LhRO3z4sPbmm29qq1ev1nw+n9bW1qZpmqZ99rOf1aZPn669+uqr2nvvvaddcskl2iWXXFLgoxZ9dXd3a9u2bdO2bdumAdr3v/99bdu2bdqRI0c0TdO0f/7nf9a8Xq/27LPPajt27NBuvvlmbebMmVosFtMf4/rrr9fOOecc7Z133tHeeOMNbe7cudrtt99eqC9JaCc/r93d3drf/M3faJs2bdIOHz6s/elPf9LOPfdcbe7cuVo8HtcfQ87r+PK5z31O83g82saNG7UTJ07ol2g0qt/mVK+56XRaW7JkibZmzRrt/fff115++WWtrKxMe/DBBwvxJU15pzqnBw4c0B5++GHtvffe0w4fPqw9++yz2qxZs7Qrr7xSf4yROqcSgMfYD3/4Q2369OmaxWLRLrzwQu3tt98u9CGJ0/Dxj39cq6qq0iwWizZt2jTt4x//uHbgwAF9fywW0z7/+c9rxcXFWlFRkfbhD39YO3HiRAGPWPS3YcMGDRhwueuuuzRNy7ZC+4d/+AetoqJCs1qt2jXXXKPV19fnPYbf79duv/12zel0am63W7vnnnu07u7uAnw1Iudk5zUajWpr1qzRysrKNLPZrM2YMUO79957Bww+yHkdXwY7n4D26KOP6rcZzmtuY2OjdsMNN2h2u13z+XzaV77yFS2VSo3xVyM07dTntKmpSbvyyiu1kpISzWq1anPmzNH+9m//VgsGg3mPMxLnVOk5ICGEEEIIIaYEqQEWQgghhBBTigRgIYQQQggxpUgAFkIIIYQQU4oEYCGEEEIIMaVIABZCCCGEEFOKBGAhhBBCCDGlSAAWQgghhBBTigRgIYQQQggxpUgAFkKICeruu+/mlltuKfRhCCHEhGMq9AEIIYQYSFGUk+5/6KGH+Pd//3dkMU8hhDh9EoCFEGIcOnHihH79qaee4hvf+Ab19fX6NqfTidPpLMShCSHEhCclEEIIMQ5VVlbqF4/Hg6IoeducTueAEoiVK1fyhS98gS996UsUFxdTUVHBz372MyKRCPfccw8ul4s5c+bw0ksv5T3Xrl27uOGGG3A6nVRUVPDJT36Sjo6OMf6KhRBi7EgAFkKISeSxxx7D5/Px7rvv8oUvfIHPfe5zfPSjH+XSSy9l69atrFmzhk9+8pNEo1EAAoEAV199Neeccw7vvfceL7/8Mq2trXzsYx8r8FcihBCjRwKwEEJMIsuXL+fv//7vmTt3Lg8++CA2mw2fz8e9997L3Llz+cY3voHf72fHjh0A/Od//ifnnHMO3/72t1mwYAHnnHMOv/jFL9iwYQMNDQ0F/mqEEGJ0SA2wEEJMIsuWLdOvG41GSktLWbp0qb6toqICgLa2NgC2b9/Ohg0bBq0nPnjwIPPmzRvlIxZCiLEnAVgIISYRs9mc97miKHnbct0lVFUFIBwOc9NNN/Hd7353wGNVVVWN4pEKIUThSAAWQogp7Nxzz+V3v/sddXV1mEzyJ0EIMTVIDbAQQkxh9913H52dndx+++1s3ryZgwcP8sorr3DPPfeQyWQKfXhCCDEqJAALIcQUVl1dzZtvvkkmk2HNmjUsXbqUL33pS3i9XgwG+RMhhJicFE2WERJCCCGEEFOI/HsvhBBCCCGmFAnAQgghhBBiSpEALIQQQgghphQJwEIIIYQQYkqRACyEEEIIIaYUCcBCCCGEEGJKkQAshBBCCCGmFAnAQgghhBBiSpEALIQQQgghphQJwEIIIYQQYkqRACyEEEIIIaaU/x/cxM4PFg8o7QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "\n", + "def plot_simulation(results):\n", + " \"\"\"\n", + " Plot the state trajectories from the simulation results.\n", + "\n", + " Parameters:\n", + " results (dict): Simulation results from run_simulations.\n", + " \"\"\"\n", + " # Extract the simulation results for the specific condition\n", + " sim_results = results[simulation_condition][1]\n", + "\n", + " # Create a new figure for the state trajectories\n", + " plt.figure(figsize=(8, 6))\n", + " for idx in range(sim_results[\"x\"].shape[1]):\n", + " time_points = np.array(sim_results[\"ts\"])\n", + " state_values = np.array(sim_results[\"x\"][:, idx])\n", + " plt.plot(time_points, state_values, label=jax_model.state_ids[idx])\n", + "\n", + " # Add labels, legend, and grid\n", + " plt.xlabel(\"Time\")\n", + " plt.ylabel(\"State Values\")\n", + " plt.title(simulation_condition)\n", + " plt.legend()\n", + " plt.grid(True)\n", + " plt.show()\n", + "\n", + "\n", + "# Plot the simulation results\n", + "plot_simulation(results)" + ] + }, + { + "cell_type": "markdown", + "id": "f57c07211b781ab5", + "metadata": {}, + "source": "`run_simulations` enables users to specify the simulation conditions to be executed. For more complex models, this allows for restricting simulations to a subset of conditions. Since the Böhm model includes only a single condition, we demonstrate this functionality by simulating no condition at all." + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "2f2e1c7023ad261b", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:58.505973Z", + "start_time": "2024-11-19T09:50:58.501775Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{}" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "llh, results = run_simulations(jax_problem, simulation_conditions=tuple())\n", + "results" + ] + }, + { + "cell_type": "markdown", + "id": "0b729e1b-3c75-4a87-a33b-0a54622609e7", + "metadata": {}, + "source": [ + "## Updating Parameters\n", + "\n", + "As next step, we will update the parameter values used for simulation. However, if we attempt to directly modify the values in `JAXModel.parameters`, we encounter a `FrozenInstanceError`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "75df1ab9e8a738a0", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:50:58.685750Z", + "start_time": "2024-11-19T09:50:58.575034Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error: cannot assign to field 'parameters'\n" + ] + } + ], + "source": [ + "from dataclasses import FrozenInstanceError\n", + "import jax\n", + "\n", + "# Generate random noise to update the parameters\n", + "noise = (\n", + " jax.random.normal(\n", + " key=jax.random.PRNGKey(0), shape=jax_problem.parameters.shape\n", + " )\n", + " / 10\n", + ")\n", + "\n", + "# Attempt to update the parameters\n", + "try:\n", + " jax_problem.parameters += noise\n", + "except FrozenInstanceError as e:\n", + " print(\"Error:\", e)" + ] + }, + { + "cell_type": "markdown", + "id": "b91941cf707704c3", + "metadata": {}, + "source": [ + "The root cause of this error lies in the fact that, to enable autodiff, direct modifications of attributes are not allowed in [equinox](https://docs.kidger.site/equinox/), which AMICI utilizes under the hood. Consequently, attributes of instances like `JAXModel` or `JAXProblem` cannot be updated directly — this is the price we have to pay for autodiff.\n", + "\n", + "However, `JAXProblem` provides a convenient method called [update_parameters](https://amici.readthedocs.io/en/latest/generated/amici.jax.html#amici.jax.JAXProblem.update_parameters). The caveat is that this method creates a new JAXProblem instance instead of modifying the existing one." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "feb125b6-4f84-427c-b870-421a328eee81", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:00.631866Z", + "start_time": "2024-11-19T09:50:58.702698Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAIjCAYAAAAN/63DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADxiUlEQVR4nOzdd1hUZ/bA8e9UGLo0AQVERUQIdrGDUWNJTEzMGk1MNBpNsmvKmmjKxlg21fxck5ieYElvm7gx1S5GBcWuKChiB1Fp0qfc3x8Do8QGCgzlfJ6HR+bOnXvPzHXg8M55z6tSFEVBCCGEEEKIJkJt7wCEEEIIIYSoS5IACyGEEEKIJkUSYCGEEEII0aRIAiyEEEIIIZoUSYCFEEIIIUSTIgmwEEIIIYRoUiQBFkIIIYQQTYokwEIIIYQQokmRBFgIIYQQQjQpkgALIRq8efPm0b59eywWi71DuawjR46gUqlYsmRJtR+7bt06VCoV69atq/G4riY2NpbY2Ng6PWdt6tmzJzNmzLB3GEKIekISYCFEg5afn8/rr7/OM888g1pt/ZF2vclmQ5GSksI///lPevfujaOjIyqViiNHjtg7LACKioqYPXv2DSXsBQUFzJo1i6FDh+Lp6XnV6xkbG8uECROuecxnnnmGd999l8zMzOuOSwjReEgCLIRo0BYtWoTJZGLs2LH2DqXObN68mbfffpvz588THh5u73AqKSoqYs6cOTeUAJ89e5a5c+eyf/9+OnbsWCNx3XHHHbi5ufHee+/VyPGEEA2bJMBCiAZt8eLF3H777Tg6Oto7lDpz++23k5uby549e7jvvvvsHU6N8/f3JyMjg6NHj/LGG2/UyDHVajV33303n376KYqi1MgxhRANlyTAQogGKz09nd27dzNo0KCr7jd79mxUKhWpqamMGzcOd3d3fHx8mDlzJoqicPz4cdsIoZ+fH/Pnz7/kGFlZWUyaNInmzZvj6OhIx44dWbp06SX75ebmMmHCBNzd3fHw8GD8+PHk5uZeNq4DBw5w99134+npiaOjI926deOnn3665vP29PTE1dX1mvtV1UcffUSbNm0wGAz06NGDDRs2XLJPWVkZL774Il27dsXd3R1nZ2f69evH2rVrbfscOXIEHx8fAObMmYNKpUKlUjF79mwAdu/ezYQJE2jdujWOjo74+fkxceJEzp07V+lcDg4O+Pn51djzqzB48GCOHj3Kzp07a/zYQoiGRRJgIUSDtWnTJgC6dOlSpf3vueceLBYLr732GtHR0bz00ku8+eabDB48mBYtWvD666/Ttm1bnn76aeLj422PKy4uJjY2ls8++4z77ruPN954A3d3dyZMmMBbb71l209RFO644w4+++wzxo0bx0svvcSJEycYP378JbHs27ePnj17sn//fp599lnmz5+Ps7MzI0eO5Mcff7zBV6bq4uLiePjhh/Hz82PevHn06dOH22+/nePHj1faLz8/n08++YTY2Fhef/11Zs+ezZkzZxgyZIgtofTx8eH9998H4M477+Szzz7js88+46677gJg5cqVHD58mAcffJCFCxcyZswYvv76a4YPH14no7Jdu3YFYOPGjbV+LiFEPacIIUQD9cILLyiAcv78+avuN2vWLAVQpkyZYttmMpmUli1bKiqVSnnttdds23NychSDwaCMHz/etu3NN99UAOXzzz+3bSsrK1N69eqluLi4KPn5+YqiKMqyZcsUQJk3b16l8/Tr108BlMWLF9u2Dxw4ULnpppuUkpIS2zaLxaL07t1bCQ0NtW1bu3atAihr16697HN74403FEBJT0+/6mtwOWVlZYqvr6/SqVMnpbS01Lb9o48+UgAlJiam0vO4eB9Fsb5WzZs3VyZOnGjbdubMGQVQZs2adcn5ioqKLtn21VdfKYASHx9/2Ri3bt16yWt3I/R6vfLoo4/WyLGEEA2XjAALIRqsc+fOodVqcXFxqdL+Dz30kO17jUZDt27dUBSFSZMm2bZ7eHgQFhbG4cOHbdt+/fVX/Pz8Kk200+l0PP744xQUFLB+/XrbflqtlkcffbTSeR577LFKcWRnZ7NmzRpGjx7N+fPnOXv2LGfPnuXcuXMMGTKEgwcPcvLkyeq9GNchKSmJrKwsHnnkEfR6vW17RQnHxTQajW0fi8VCdnY2JpOJbt26sX379iqdz2Aw2L4vKSnh7Nmz9OzZE6DKx7hRzZo14+zZs3VyLiFE/aW1dwBCCFFXgoKCKt12d3fH0dERb2/vS7ZfXJd69OhRQkNDbW3WKlR0YDh69KjtX39//0sS8rCwsEq3Dx06hKIozJw5k5kzZ1421qysLFq0aFGNZ1d9FXGHhoZW2q7T6WjduvUl+y9dupT58+dz4MABjEajbXtISEiVzpednc2cOXP4+uuvycrKqnRfXl5edcO/LoqioFKp6uRcQoj6SxJgIUSD5eXlhclk4vz581WaFKbRaKq0DajVmtSKBTuefvpphgwZctl92rZtW2vnvx6ff/45EyZMYOTIkUyfPh1fX180Gg2vvvoqaWlpVTrG6NGj2bRpE9OnT6dTp064uLhgsVgYOnRonS1ikpube8kfPEKIpkcSYCFEg9W+fXvA2g0iKiqq1s4THBzM7t27sVgslUaBDxw4YLu/4t/Vq1dTUFBQaRQ4JSWl0vEqRld1Ot01O1jUpoq4Dx48yM0332zbbjQaSU9Pr9SD9/vvv6d169b88MMPlUZQZ82aVemYVxpdzcnJYfXq1cyZM4cXX3zRtv3gwYM18lyq4uTJk5SVldW73slCiLonNcBCiAarV69egLWWtTYNHz6czMxMvvnmG9s2k8nEwoULcXFxISYmxrafyWSydUIAMJvNLFy4sNLxfH19iY2N5cMPPyQjI+OS8505c6aWnkll3bp1w8fHhw8++ICysjLb9iVLllzSuq1ipPzikfHExEQ2b95caT8nJyeAKj0e4M0337yRp1At27ZtA6B37951dk4hRP0kI8BCiAardevWREZGsmrVKiZOnFhr55kyZQoffvghEyZMYNu2bbRq1Yrvv/+ejRs38uabb9rKL0aMGEGfPn149tlnOXLkCB06dOCHH364bH3ru+++S9++fbnpppuYPHkyrVu35vTp02zevJkTJ06wa9euK8aTl5dnS6orWnq98847eHh44OHhwdSpU6v0vHQ6HS+99BIPP/wwN998M/fccw/p6eksXrz4khrg2267jR9++IE777yTW2+9lfT0dD744AM6dOhAQUGBbT+DwUCHDh345ptvaNeuHZ6enkRGRhIZGUn//v2ZN28eRqORFi1asGLFCtLT0y8b2zvvvENubi6nTp0CYPny5Zw4cQKAxx577JJJeheLjY1l/fr1lyTbK1euJCgoiM6dO1fp9RFCNGJ27EAhhBA37D//+Y/i4uJy2RZbFSraoJ05c6bS9vHjxyvOzs6X7B8TE6NERERU2nb69GnlwQcfVLy9vRW9Xq/cdNNNl23Nde7cOeX+++9X3NzcFHd3d+X+++9XduzYcdlWXmlpacoDDzyg+Pn5KTqdTmnRooVy2223Kd9//71tn8u1QUtPT1eAy34FBwdf+cW6gvfee08JCQlRHBwclG7duinx8fFKTExMpTZoFotFeeWVV5Tg4GDFwcFB6dy5s/Lzzz8r48ePv+ScmzZtUrp27aro9fpKLdFOnDih3HnnnYqHh4fi7u6u/O1vf1NOnTp12bZpwcHBV3yO12r51rVrV8XPz6/SNrPZrPj7+ysvvPBCtV8fIUTjo1IUWRNSCNFw5eXl0bp1a+bNm1epnZloms6fP4+npydvvvkm//jHP2zbly1bxr333ktaWhr+/v52jFAIUR9IDbAQokFzd3dnxowZvPHGG3XWSUDUX/Hx8bRo0YLJkydX2v76668zdepUSX6FEADICLAQQjRC2dnZlSa2/ZVGo8HHx6cOIxJCiPpDEmAhhGiEKiaCXUlwcDBHjhypu4CEEKIekQRYCCEaoW3btpGTk3PF+w0GA3369KnDiIQQov6QBFgIIYQQQjQpMglOCCGEEEI0KbIQBmCxWDh16hSurq5XXMZTCCGEEELYj6IonD9/noCAgErL0l8PSYCBU6dOERgYaO8whBBCCCHENRw/fpyWLVve0DEkAQbbMqbHjx/Hzc2t1s9nNBpZsWIFt9xyCzqdrtbPJ2qfXNPGSa5r4yPXtHGS69r4XO6a5ufnExgYaMvbboQkwGAre3Bzc6uzBNjJyQk3Nzd5ozYSck0bJ7mujY9c08ZJrmvjc7VrWhPlqjIJTgghhBBCNCmSAAshhBBCiCZFEmAhhBBCCNGkSA2wEEIIIRods9mM0Wi0dxiiGjQaDVqttk5a0to1AY6Pj+eNN95g27ZtZGRk8OOPPzJy5MhK++zfv59nnnmG9evXYzKZ6NChA//9738JCgoCoKSkhKeeeoqvv/6a0tJShgwZwnvvvUfz5s3t8IyEEEIIYW8FBQWcOHECWey24XFycsLf37/Wk2C7JsCFhYV07NiRiRMnctddd11yf1paGn379mXSpEnMmTMHNzc39u3bh6Ojo22ff/7zn/zyyy989913uLu7M3XqVO666y42btxYl09FCCGEEPWA2WzmxIkTODk54ePjIwtcNRCKolBWVsaZM2dIT0+nVatWtXo+uybAw4YNY9iwYVe8/1//+hfDhw9n3rx5tm1t2rSxfZ+Xl0dcXBxffvklN998MwCLFy8mPDychIQEevbsWXvBCyGEEKLeMRqNKIqCj48PBoPB3uGIajAYDOh0Oo4ePVrr5Sv1tgbYYrHwyy+/MGPGDIYMGcKOHTsICQnhueees5VJbNu2DaPRyKBBg2yPa9++PUFBQWzevPmKCXBpaSmlpaW22/n5+YD1TVMX9UIV55DapMZDrmnjJNe18ZFr2jhdfF3NZjOKoqAoChaLxc6RieuhKMpl36s1+b6ttwlwVlYWBQUFvPbaa7z00ku8/vrr/P7779x1112sXbuWmJgYMjMz0ev1eHh4VHps8+bNyczMvOKxX331VebMmXPJ9hUrVuDk5FTTT+WKVq5cWWfnEnVDrmnjJNe18ZFr2jitXLkSrVaLn58fBQUFlJWV2TskUU1lZWUUFxezadMmoPJ7taioqMbOU28T4Iq/2u644w7++c9/AtCpUyc2bdrEBx98QExMzHUf+7nnnmPatGm22xVL691yyy11thLcypUrGTx4sKxY00jINW2c5Lo2PnJNG6eLr6vZbOb48eO4uLhUmjMkGoaSkhIMBgO9e/cmPj6+0nu14hP7mlBvE2Bvb2+0Wi0dOnSotD08PJw///wTAD8/P8rKysjNza00Cnz69Gn8/PyueGwHBwccHBwu2a7T6er0B2Jdn0/UPrmmjZNc18ZHrmnjpNPpUKvVqFQq1Go1arUsd9DQVFw/rdaaol78Xq3J92y9/Z+h1+vp3r07KSkplbanpqYSHBwMQNeuXdHpdKxevdp2f0pKCseOHaNXr151Gq8QQgghxI04c+YMjz76KEFBQTg4OODn58eQIUN4+eWXUalUV/1at24dACdOnECv1xMZGWk77uzZs6/5+Cvt1759+8vG+uqrr6LRaHjjjTdq/XWpDXYdAS4oKODQoUO22+np6ezcuRNPT0+CgoKYPn0699xzD/3792fAgAH8/vvvLF++3HaR3d3dmTRpEtOmTcPT0xM3Nzcee+wxevXqJR0ghBBCCNGgjBo1irKyMpYuXUrr1q05ffo0q1evJiIigoyMDNt+TzzxBPn5+SxevNi2zdPTE4AlS5YwevRo4uPjSUxMJDo6mqeffppHHnnEtm/37t2ZMmUKkydPviSGiIgIVq1aZbtdMRL7V4sWLWLGjBksWrSI6dOn3/Bzr2t2TYCTkpIYMGCA7XZFXe748eNZsmQJd955Jx988AGvvvoqjz/+OGFhYfz3v/+lb9++tscsWLAAtVrNqFGjKi2EIYQQQgihKArFRrNdzm3Qaarchzg3N5cNGzawbt062zyn4OBgevTocelxDQZKS0svKfdUFIXFixfz3nvv0bJlS+Li4oiOjsbFxQUXFxfbfhqNBldX18uWi1ZMIrya9evXU1xczNy5c/n000/ZtGkTvXv3rtLzrC/smgDHxsZec5WWiRMnMnHixCve7+joyLvvvsu7775b0+EJIYQQooErNprp8OIfdjl38twhOOmrlmpVJKnLli2jZ8+el52rdC1r166lqKiIQYMG0aJFC3r37s2CBQtwdnau8jEOHjxIQEAAjo6O9OrVi1dffdW2+m6FuLg4xo4di06nY+zYscTFxTW4BLje1gALIYQQQjQVWq2WJUuWsHTpUjw8POjTpw/PP/88u3fvrvIx4uLiGDNmDBqNhsjISFq3bs13331X5cdHR0ezZMkSfv/9d95//33S09Pp168f58+ft+2Tn5/P999/z7hx4wAYN24c3377LQUFBVV/svVAve0CIRo3s8lEWUkxZUVF1n+LizEWF2E2m3H3bY6HXwBamaEthBDiBhl0GpLnDrHbuatj1KhR3HrrrWzYsIGEhAR+++035s2bxyeffMKECROu+tjc3Fx++OEHW6cssCancXFx13xshYtX542KiiI6Oprg4GC+/fZbJk2aBMBXX31FmzZt6NixI2BtURscHMw333xj26chkARYVIuxpITz2WcpK7YmrWUl1sS1tLiYsuIijCUXtl/8r7G4qNI28zVWc1Gp1Lg3b45nQEuaBbTEM6AlngEt8GwRiMHVTdZ2F0IIUSUqlarKZQj1gaOjI4MHD2bw4MHMnDmThx56iFmzZl0zif3yyy8pKSkhOjratq1iNbzU1FTatWtX7Vg8PDxo165dpYYFcXFx7Nu3r9LkOIvFwqJFiyQBFo1PXlYmST8vY++6lZguWkb6Rml1enQGA3qDAb2jAZVKTe7pU5QVF5ObmUFuZgZs31rpMY4uruWJcQtrYtwiEM+AFrj7+qG5wmxVIYQQoiHq0KEDy5Ytu+Z+cXFxPPXUU5ckyn//+99ZtGgRr732WrXPXVBQQFpaGvfffz8Ae/bsISkpiXXr1tm6TgBkZ2cTGxvLgQMHrtg2rb6RbEFcVeahVLb+/CMHEzaiKNbV+fQGA3onZ/SO5Ymrwemi7w3l3zuhu2TbRfeVf3+5hFVRFApzssk+dZLsUyfIPnWcnPLv889kUVJwnlOp+zmVur/S49QaDR7N/a0jxi0qRo2tX44XzX4VQggh6ptz587xt7/9jYkTJxIVFYWrqytJSUnMmzePO+6446qP3blzJ9u3b+eLL764JAEdO3Ysc+fO5aWXXrpiS7MKTz/9NCNGjCA4OJhTp04xa9YsNBoNY8eOBaxJdo8ePejfv/8lj+3evTtxcXENpi+wJMDiEorFwuEdSST9/AMnkvfatrfq2IVuI+4iKLJjrZYgqFQqXDy9cPH0IigyqtJ9xtIScjJOWRPjkyfIyThJ9skTZGecwFRaWp4wnyAtqfIxndw98AxoiU+rEFqERdCifQdcmnkihBBC1AcuLi5ER0ezYMEC0tLSMBqNBAYGMnnyZJ5//vmrPjYuLo4OHTpcdvT1zjvvZOrUqfz666/cfvvtVz3OiRMnGDt2LOfOncPHx4e+ffuSkJCAj48PZWVlfP755zzzzDOXfeyoUaOYP38+r7zySoNYZVESYGFjMhrZ/+dakpb/SPbJ44B1VLV9nxi63XYnPsEhdo4QdA6O+LZqjW+r1pW2KxYL57PPXZQYW//NPnWCguxzFOXlUpSXy4n9e9nx23IAPJr706K9NRlu0b4DzfxbSG2xEEIIu3BwcODVV1/l1Vdfvea+S5YsqXR74cKFV9zXz88Ps7lyH+QjR45cdt+vv/76isfR6/WcPXv2ivfPmDGDGTNmXPH++kYSYEFJQQG7Vv7Kjt+XU5ibA1jLHKIGDaPLsNtx9fK2c4TXplKrcfP2wc3bh1ZRnSvdV1ZcRE7GKc6dPE7GwRROHtjHmWNHyD2dQe7pDPatt654Y3Bzp0VYB1qGR9AirAO+IW1Qa6o3g1cIIYQQ9Z8kwE3ctl+WsfGbzzGWlgDg4ulFl+F3EDVwCA5OVW+cXZ/pDU40b92W5q3b0qGfdeXB0qJCTqXs52RKMicPJJNxKIXi/DwObd3Moa2bAetos39oWPkIcQT+oWHoHQ32fCpCCCGEqAGSADdh+zesZd2nnwDgHdSK7iPuIqx3PzTa+l+7c6McnJwJ6dyNkM7dAGv5x+nDhzh5YJ/1KyWZ0sJCju3dxbG9uwDrKHPzkDa2hLhFWAec3D3s+CyEEEIIcT0kAW6iMg6m8MeHbwPQ/fZR9Lt3QpOuf9XqdLQIC6dFWDjccTeKxcK5E8c4cSC5PClO5vy5M2SmHSQz7SDbfvkfAM0CWtIirAN+oWEYC/KvubS3EEIIIexPEuAm6Py5s/zv/17CbDTSpls0/caOb9LJ7+Wo1Gq8g1rhHdSKTrcMByD/bBYnL0qIzx4/Ss6pE+ScOsHetSsAWLp5HSGduhAc1ZmgyI6NpoxECCGEaEwkAW5ijKUl/O//XqIwNwfvwGCGT30KlVpt77AaBDdvX9z6+hLeNxaA4oLz1jriA/s4sX8fGWmp5J85za6Vv7Fr5W+o1Gr8Q9vTqmNnWnXsQvPWbVGrZVKdEEIIYW+SADchiqLwx/tvcfrwIQyuboycMRO9wcneYTVYBhdX2nTtQZuuPTAajfz8v/8RERTA8b27Obp7BzkZJzmVksyplGQ2ffsFji6uBN3UyZoQR3VpEN01hBBCiMZIEuAmJPGHb0jZvAG1RsPt057H3dfP3iE1KmqdjpDO3WnXozcAeVmnObp7B0d2befY3l2UFJwndfMGUjdvAMCrZRDBUdbR4ZbhEegcHO0ZvhBCCNFkSALcRBzcsomN334OwMBJj9KyQ6SdI2r83H2bEzVoKFGDhmIxm8k4lMqRXds5ums7mWkHOXfiGOdOHGP7r/9Do9PRon0ErTp2oVXHLngHBktdthBCCFFLJAFuArKOHObXd+YD0HnYCKIGDrVzRE2PWqOxdZnoM/o+igvOc2zPLo7u3s6RXTs4f+4Mx/bs5NiencR/vgjnZp60iupMcPmXk5u7vZ+CEEII0WjI7KdGrigvl2Vv/BtTaSnBUZ2Jvf8he4cksNYPh/Xqyy0PP87kdxcxYf77DBg/mZBOXdHqHSjMyWbf+tX8uvD/eH/KOD5/7kk2fvMZmWkHUSwWe4cvhBCiFpw5c4ZHH32UoKAgHBwc8PPzY8iQIbz88suoVKqrfq1btw6AEydOoNfriYy88Env7Nmzr/n4K+3Xvn37SjG2atXKdp9GoyEgIIBJkyaRk5NTZ69TTZAR4EbMZDTyv/mvcP7sGZr5B3DbE8/I0r71kEqlwqtlIF4tA+ky/A5MZWWcTEm2lkvs3sGZo+mcPnyI04cPkfDDN7g086RNt2jadI0mMLIjWl3jX7hECCGaglGjRlFWVsbSpUtp3bo1p0+fZvXq1URERJCRkWHb74knniA/P5/Fixfbtnl6egKwZMkSRo8eTXx8PImJiURHR/P000/zyCOP2Pbt3r07U6ZMYfLkyZfEEBERwapVq2y3tdpLU8W5c+cyefJkzGYzqampTJkyhccff5zPPvusRl6HuiAJcCOlKAqrPnmXUynJODg5M3LGizi6uNg7LFEFWr2e4Js6EXxTJwAKc3M4sms7h7dtIX3Xdgpysm2t1nSOBkI6dqFNt2hCunTH4OJq3+CFEKK+URQwFtnn3DonqOJ8jtzcXDZs2MC6deuIiYkBIDg4mB49elyyr8FgoLS0FD+/ypPZFUVh8eLFvPfee7Rs2ZK4uDiio6NxcXHB5aIcQKPR4OrqesnjwZrwXm77xS5+bIsWLRg/fjxfffVVlZ5nfSEJcCO1/df/sW/dKlQqNbc9MQPPgJb2DklcJ2ePZkTEDCQiZiCmsjKO79tN2rZE0pISKcjJJjVxI6mJG1Gp1bRo34G23XrSpms0Hn7+9g5dCCHsz1gErwTY59zPnwJ91RZEqkhSly1bRs+ePXFwcKj26dauXUtRURGDBg2iRYsW9O7dmwULFuDsXPVFmQ4ePEhAQACOjo706tWLV199laCgoCvuf/LkSZYvX050dHS147UnqQFuhNJ3JLH+s0UAxNw/iVaduto5IlFTtHo9IZ27MeihfzDlvSXc98oCet51Dz5BrVAsFk4k72Xdp58Q98Rkljz1d/78+lMyDqZI3bAQQtRzWq2WJUuWsHTpUjw8POjTpw/PP/88u3fvrvIx4uLiGDNmDBqNhsjISFq3bs13331X5cdHR0ezZMkSfv/9d95//33S09Pp168f58+fr7TfM888g4uLCwaDgZYtW6JSqfjPf/5T5fPUBzIC3MhknzrBz2/NQ1EsRA64hS7Db7d3SKKWqNRq/NqE4tcmlD733E9eViZpSYmkbUvkePJeW5u1xB+/xdmjGa279qBtt54ERXZEq9fbO3whhKgbOifrSKy9zl0No0aN4tZbb2XDhg0kJCTw22+/MW/ePD755BMmTJhw1cfm5ubyww8/8Oeff9q2jRs3jri4uGs+tsKwYcNs30dFRREdHU1wcDDffvstkyZNst03ffp0JkyYgKIoHD9+nOeff55bb72V+Ph4NA1krpEkwI1Mwg/fUFZcRIv2HRj00KPSS7YJcff1o8vwO+gy/A5KCgpI35nEoaREjuxMojA3hz2r/2DP6j/QOjjQKqoLbbv3JKRzN2mxJoRo3FSqKpch1AeOjo4MHjyYwYMHM3PmTB566CFmzZp1zST2yy+/pKSkpFIpgqIoWCwWUlNTadeuXbVj8fDwoF27dhw6dKjSdm9vb9q2bQtAaGgob775Jr169WLt2rUMGjSo2uexB0mAGxFFUTi6ewcAfUaPQ6OV7gBNlaOLC+F9YwnvG4vJaORE8h4OlY8OF5w7y6Gtmzm0dTMqlZqAsHDadIumbbdomvm3sHfoQgghLtKhQweWLVt2zf3i4uJ46qmnLkmU//73v7No0SJee+21ap+7oKCAtLQ07r///qvuVzHqW1xcXO1z2IskwI3I2eNHKcrLRevggH+7cHuHI+oJrU5nW2Fu4MRHyEpPsyXDZ44c5uSBfZw8sI/4zxfh2SLQlgz7tw1DpZZpAkIIURfOnTvH3/72NyZOnEhUVBSurq4kJSUxb9487rjjjqs+dufOnWzfvp0vvvjikr69Y8eOZe7cubz00kuXbWl2saeffpoRI0YQHBzMqVOnmDVrFhqNhrFjx1ba7/z582RmZtpKIGbMmIGPjw+9e/e+vidvB5IANyIVo78twyOlN6y4LJVKRfPWbWneui19Rt9H/pks0rYlcigpkRPJe8g+eZzsk8fZ+r/vcXL3oHWXHrTpFk3wTR3ROTjaO3whhGi0XFxciI6OZsGCBaSlpWE0GgkMDGTy5Mk8//zzV31sXFwcHTp0uCT5BbjzzjuZOnUqv/76K7fffvV5QSdOnGDs2LGcO3cOHx8f+vbtS0JCAj4+PpX2e/HFF3nxxRcB8PHxoXv37qxYsQIvL69qPmv7kQS4ETm6ZyeArX+sENfi5uNL56Ej6Dx0BCWFBRzZuY1DSYmk70iiKC+XvWtXsHftCrR6B4KjOtOmWw/adOmBk7uHvUMXQohGxcHBgVdffZVXX331mvsuWbKk0u2FCxdecV8/Pz/MZnOlbUeOHLnsvl9//fU1z32lxzY0kgA3EiajkRP79wIQHNXZztGIhsjR2YX2fWJo3ycGs8nIieR9HEpKIG1bIufPniEtKYG0pARQqQgIbW8tlejeU3pMCyGEaHAkAW4kMlL3YyotxcndA+/AYHuHIxo4jVZHcFQngqM6cfODD3PmaDppSYkcSkogKz2NU6n7OZW6nw1fLqGZfwvr0szdoglo1x61umG0wBFCCNF0SQLcSBzdswuwlj9I6zNRk1QqFb6tWuPbqjW97h5L/tkzHN62hUNJCRzft4ecjJMkLf+BpOU/YHB1s9YNd4+m1U2d0TlK3bAQQoj6RxLgRuLoHusEuCCp/xW1zM3bh05DbqXTkFspLSriyK5tpCUlcnjHVorP57Nv/Sr2rV+FVqcn6KaOtOnWkzZde+Ds0czeoQshhBCAJMCNQklBAafTrE2qg6M62TcY0aQ4ODkR1qsfYb36YTaZOHkgmbSkBA4lJZJ/5jSHt2/l8PatrFKpaRkeQbuefQmN7i3JsBBCCLuSBLgROL5vN4piwbNFIK6e3vYORzRRGq2WoMgogiKjiB0/mbPHj5K2NYFDSQmcPnyI48l7OJ68h9WLPyAwPFKSYSGEEHYjCXAjUFH+IO3PRH2hUqnwCWqFT1Areo4aQ15WJqkJG0lN+JPMtIOVkuGKkeF20X0kGRZCCFEnJAGuY+dLjLy35iCpR9UMr6FjHt29E5DyB1F/ufv60f32UXS/fRR5WadJTSxPhg+lciJ5LyeS97Jm8Ye0bB9Bu559CI3ug0szT3uHLYQQopGSBLiOlZosvB+fDqhRFOWGj5eXlUnu6QxUajWBHW668QCFqGXuvs3pPuIuuo+4i/wzWaQm/ElqwkYyDqVwYv9eTuzfy5olH9EirEP5yHBvXDwbzupCQggh6j9JgOuYTqO2fW80K+hv8HgVq7/5h7ZHb3C6waMJUbfcfHzpNuIuuo24i/yzWbYyiYyDKZw8sI+TB/axdulHtAgLt9UMS527EEKIG6W+9i6iJjloL7zkZWbLDR/v4v6/QjRkbt6+dLvtTu59aT6T311M7AMP4d+uPSgKJw8ks3bJR3z06AS+enEG23/9H+ezz9o7ZCGEqHNfffUVGo2Gf/zjH9f1+CVLlqBSqWxfLi4udO3alR9++KGGI63fZAS4jlUeAb6xBFixWDi2tzwBluWPRSPi5u1D11tH0vXWkeSfPcPBxE2kJvxpXYEuJZlTKcmsXfoxAe2sI8PtevbB1UtGhoUQjV9cXBwzZszgww8/ZP78+Thex4JDbm5upKSkAHD+/HkWL17M6NGj2bdvH2FhYTUdcr0kI8B1TKNWoVFbV2orM91YApx15DAl5/PRGwz4tQmtifCEqHesyfAdjP33G0x5bwkDxk8mIKwDAKdS97Pu04/56O8T+HLm02z7ZRn5Z8/YOWIhRH2iKApFxiK7fFVnrk9sbCxTp05l6tSpuLu74+3tzcyZMysdIz09nU2bNvHss8/Srl27S0ZtlyxZgoeHB8uWLSM0NBRHR0eGDBnC8ePHK+2nUqnw8/PDz8+P0NBQXnrpJdRqNbt3776xF7sBkRFgO9BpVJgtCkbzjU2Cq6j/DYyIQqOVSykaP1cvb7oMv4Muw+/g/LmzHEzcSErCRk6lJJOReoCM1AOs+/QT/Nu1J6xnX0Kj++Dm7WPvsIUQdlRsKib6y2i7nDvx3kScdFWfn7N06VImTZrEli1bSEpKYsqUKQQFBTF58mQAFi9ezK233oq7uzvjxo0jLi6Oe++9t9IxioqKePnll/n000/R6/X8/e9/Z8yYMWzcuPGy5zSbzXz66acAdOnS5TqfacMjWZMd6DVqSoyWGx4BPrq7fPnjyE41EJUQDUulZDj7rK1M4mTK/srJcGiYrUzCzdvX3mELIcQVBQYGsmDBAlQqFWFhYezZs4cFCxYwefJkLBYLS5YsYeHChQCMGTOGp556ivT0dEJCQmzHMBqNvPPOO0RHW5P+pUuXEh4ezpYtW+jRowcAeXl5uLi4AFBcXIxOp+Ojjz6iTZs2dfyM7ceuCXB8fDxvvPEG27ZtIyMjgx9//JGRI0dedt9HHnmEDz/8kAULFvDkk0/atmdnZ/PYY4+xfPly1Go1o0aN4q233rJd2PpIXz4R7kZqgI1lpZxMSQak/68Qrp7edBl2O12G3U5B9jlSbclwMhkHU8g4mML6z+LwbxtGu559aNezL24+kgwL0RQYtAYS702027mro2fPnqhUKtvtXr16MX/+fMxmM6tWraKwsJDhw62rCHh7ezN48GAWLVrEv//9b9tjtFot3bt3t91u3749Hh4e7N+/35YAu7q6sn37dsA6Yrxq1SoeeeQRvLy8GDFixHU/34bErglwYWEhHTt2ZOLEidx1111X3O/HH38kISGBgICAS+677777yMjIYOXKlRiNRh588EGmTJnCl19+WZuh35CKiXA30gXi5IFkzEYjLl7eeAa0rKnQhGjwXDy96DJsBF2GjaAg+xwHt2wiNWEjJw7sI+NQChmHUlj/+SL82razrUDn7tvc3mELIWqJSqWqVhlCfRUXF0d2djYGw4Wk2mKxsHv3bubMmYNaXfVpXWq1mrZt29puR0VFsWLFCl5//XVJgOvCsGHDGDZs2FX3OXnyJI899hh//PEHt956a6X79u/fz++//87WrVvp1q0bAAsXLmT48OH83//932UT5vpAX5EA30AJREX5Q3Bkp0p/LQohLnDx9KLz0BF0HjqCgpzs8mT4T07s30fmoVQyD6US//ki/NqElpdJ9JVkWAhhN4mJlUeqExISCA0NJTc3l//97398/fXXRERE2O43m8307duXFStWMHToUABMJhNJSUm20d6UlBRyc3MJDw+/6rk1Gg3FxcU1/Izqr3pdA2yxWLj//vuZPn16pQteYfPmzXh4eNiSX4BBgwahVqtJTEzkzjvvvOxxS0tLKS0ttd3Oz88HrHUzRqOxhp/FpbQa67/Fpdd/vorlj1tG3FQnMYurq7gGci3qLwcXVyJvHkLkzUMozM0hbWsCB7ds4tSBZDLTDpKZdpD4LxbjG9KW0OjetO3RG6fy5ZjlujYe8l5tnC6+rmazGUVRsFgsWCw33m+/Lh07dox//vOfTJkyhe3bt7Nw4ULeeOMNPv30U7y8vLj77rsvGfQaNmwYn3zyCbfccgsWiwWdTsdjjz3Gm2++iVar5fHHH6dnz55069bN9pooisKpU6cAaw3wypUr+eOPP5g5c6bdX7OK+EwmE1D5vVqT79t6nQC//vrrtot3OZmZmfj6Vq7j02q1eHp6kpmZecXjvvrqq8yZM+eS7StWrMDJqfY/Jikt0gAqErduI/9Q9TtBmEuKOXP0MAApGVmk/fprDUcortfKlSvtHYKoBkPnXgS370jhiSMUHDtMcVYmWemHyEo/xMavP8XB0xuXoNb8WliAzrn+zisQ1Sfv1cZp5cqVaLVa/Pz8KCgooKyszN4hVZnJZOKee+4hLy+P6OhoNBoNDz/8MGPGjKFv374MHz6c8+fPX/K4YcOG8cgjj5Cenk5JSQkGg4GpU6dy7733kpGRQa9evXj77bdtg30lJSXk5+fTokULABwcHAgMDOS5555j6tSptv3spaysjOLiYjZt2gRUfq8WFRXV2HnqbQK8bds23nrrLbZv317jH/E/99xzTJs2zXY7Pz+fwMBAbrnlFtzc3Gr0XJcTdyyBE4X5RHbsxJBI/2o/PnXzBtIB76BW3D7q7poPUFSb0Whk5cqVDB48GJ1OZ+9wxHUqysslLSmBg4mbOLl/H6XZZynNPsu5nVsIaN+BsF79aNujNwbX2v85IWqHvFcbp4uvq9ls5vjx47i4uFzXIhH2otVqcXZ2ZsGCBXzyySeV7tuzZ88VHzd+/HjGjx8PgKOjIyqVivvuu4/77rvvsvs/8sgjPPLIIzUXeA2rSOJ79+5NfHx8pfdqTSbn9TYB3rBhA1lZWQQFBdm2mc1mnnrqKd58802OHDmCn58fWVlZlR5nMpnIzs7Gz8/visd2cHDAwcHhku06na5OfiA66Kw1EBZU13W+E8l7Aevqb/IDvH6pq/9Dona4e/vQZegIugwdQVFeLgc2b2DzL/+jJCuTUweSOXUgmfWffkKrjl1o3yeGNt2i0TtWb5a3qB/kvdo46XQ61Go1KpUKtVpdrYlh9UFF3Ner4rEN7XlfrOL6acvXN7j4vVqT79l6mwDff//9DBo0qNK2IUOGcP/99/Pggw8C1vYgubm5bNu2ja5duwKwZs0aLBaLrf9dfaTTlK8Edx0LYSiKwtE95RPgbupUk2EJIS7i5O7BTQOHcrzUQr/oHqRt3cyBP9eTdSSNw9u3cnj7VrQODrTpGk143xhadeyCRisJlRBCNAR2TYALCgo4dOiQ7XZ6ejo7d+7E09OToKAgvLy8Ku2v0+nw8/OzrVMdHh7O0KFDmTx5Mh988AFGo5GpU6cyZsyYetsBAm6sC0ROxinOnz2DRqulZfilEwOFEDXP1cub7iPuovuIuzh38jgHNsZzYOM6cjMzSNkUT8qmeBydXQjt2YfwPjG0CI9ArdbYO2whRAOybt26Gz7GhAkTmDBhwg0fpymwawKclJTEgAEDbLcr6nLHjx/PkiVLqnSML774gqlTpzJw4EDbQhhvv/12bYRbYyr6AF/PQhjHypc/DgjrgM6h4dQ2CdFYeLUIpM/o++j9t3s5nXaQ/RvXk7J5A4U52exZ/Qd7Vv+BSzNPwnr3J7xvLL4hbaRVoRBC1DN2TYBjY2NRlKqXARw5cuSSbZ6envV60YvLqVgJ7noWwpDyByHqB5VKhV/bdvi1bUfM/RM5kbyX/X+u5+CWjRTkZLPtl2Vs+2UZzfxb0L5Pf9r3iZFFa4QQop6otzXAjZm+vAa4uiPAFrOZ4/usM0ElARai/lCrNQRFdiQosiMDJz3KkZ3bOLBxPWnbtpCTcZLN33/F5u+/onnrtrTv3Z+w3v1x9fK2d9hCCNFkSQJsB7YRYFP1JsFlph2ktKgQR2cXfFu3qY3QhBA3SKvT0bZ7T9p270lZcRGHkhI58Oc6juzewenDhzh9+BDrv1hMy/AIwvvEEtqzDwYXV3uHLYQQTYokwHagv84a4Iryh8DIKJlgI0QDoDc40aHfADr0G0BRfh6pCRs5sHEdJw8kcyJ5LyeS97J60Qe06mRtq9a2azS6BtS3VAghGipJgO1Ad51dII7t2QVA8E2dazwmIUTtcnJzp9Mtw+l0y3Dyz2aVd5JYz5mj6RzetoXD27agdXCgbbeetO8TQ6uOnaWtmhBC1BJJgO3geibBlZUUcyr1ACD1v0I0dG7evvS442563HE3504c48DG9ezfuJ6805kc2LieAxvX4+jiSruefWjfJ4aW7SNQNeDG9kIIUd/IT1Q70F3HJLgTyXuxmE24+zbHw6/6yycLIeonr5ZB9Lnnfia99TH3vjyfLsNux8ndg5KC8+xe9TvfznmOj6ZOZP3nizidnlatzjlCiMbnq6++QqPR8I9//OOGjlNcXIynpyfe3t6UlpbWUHQNh4wA28GFhTCq/ovsaHn/Xyl/EKJxUqlU+LcNw79tGDEPTOL43j0c2LSeg4mbKDh3lqTlP5C0/AeaBbQkvE8M7fv0p5l/C3uHLYSoY3FxccyYMYMPP/yQ+fPn43id8wb++9//EhERgaIoLFu2jHvuuaeGI63fZATYDnTa6k+CO7rbOgEuSMofhGj01GoNwVGdGPLIEzzy4Wfc/tTztOvZF61OT86pE2z67gsWPfkwnz/3T7b9soyC7HP2DlmIektRFCxFRXb5qs4nNrGxsUydOpWpU6fi7u6Ot7c3M2fOrHSM9PR0Nm3axLPPPku7du344YcfKh1jyZIleHh4sGzZMkJDQ3F0dGTIkCEcP378kvPFxcUxbtw4xo0bR1xc3PW/wA2UjADbQXWXQi7IyebciWOgUhEUGVWboQkh6hmtXk9oj96E9uhNaVERh7Zu5sCmeI7u3sHpwwc5ffgg6z6LI7DDTbTvE0O76D44urjYO2wh6g2luJiULl3tcu6w7dtQOTlVef+lS5cyadIktmzZQlJSElOmTCEoKIjJkycDsHjxYm699Vbc3d1tieu9995b6RhFRUW8/PLLfPrpp+j1ev7+978zZswYNm7caNsnLS2NzZs388MPP6AoCv/85z85evQowcHBNfPEGwBJgO2gukshVyx/3DykLQZXt9oKSwhRzzk4ORERM5CImIEU5eWSkvAnBzbGcyolmeP7dnN8325Wx71PSOeutO8TQ5uuPWTJdCEakMDAQBYsWIBKpSIsLIw9e/awYMECJk+ejMViYcmSJSxcuBCAMWPG8NRTT5Genk5ISIjtGEajkXfeeYfo6GjAmlSHh4ezZcsWevToAcCiRYsYNmwYzZo1A2DIkCEsXryY2bNn1+0TtiNJgO1Ar7VOgqtqF4iK8ofgmzrWWkxCiIbFyd2DzkNuo/OQ28jLOs2BTfGkbFzPmWNHSEtKJC0pEb3BQLuefYnoP5AW7TtIJwnRJKkMBsK2b7PbuaujZ8+eqFQq2+1evXoxf/58zGYzq1atorCwkOHDhwPg7e3N4MGDWbRoEf/+979tj9FqtXTv3t12u3379nh4eLB//3569OiB2Wxm6dKlvPXWW7Z9xo0bx9NPP82LL76Iuon8nJAE2A4ujABfuzZIURSO7i3v/xslE+CEEJdy921O9Mi/ET3yb5w9doQDm+LZ/+d68s+cZu/alexduxJ33+aE97uZiP43SycZ0aSoVKpqlSHUV3FxcWRnZ2O4KKm2WCzs3r2bOXPmVDlx/eOPPzh58uQlk97MZjOrV69m8ODBNRp3fSUJsB1Upwb43IljFOZko9XpCWgXXtuhCSEaOO+gVvQNakWf0eM4eSCZffFrSE3YQF7WaRL++xUJ//2KgLAORMTcTFivfjg4Ods7ZCFEucTExEq3ExISCA0NJTc3l//97398/fXXRERE2O43m8307duXFStWMHToUABMJhNJSUm2coeUlBRyc3MJD7fmEHFxcYwZM4Z//etflc718ssvExcXJwmwqD3V6QKRlZ4GgF9oO7R6fa3GJYRoPFRqNS07RNKyQyQ3PziFQ1sTSI5fw9HdOzmVksyplGTWLv6INt2iiYgZSHBUZ9QaWWJdCHs6duwY06ZN4+GHH2b79u0sXLiQ+fPn89lnn+Hl5cXo0aMrlUgADB8+nLi4OFsCrNPpeOyxx3j77bfRarVMnTqVnj170qNHD86cOcPy5cv56aefiIyMrHScBx54gDvvvJPs7Gw8PT3r7DnbiyTAdlCdEeCivFwAXD29azMkIUQjpnNwJLxvLOF9YynIPsf+P9exb/1qzp04RsrmDaRs3oCzRzPa940lImYgPkGt7B2yEE3SAw88QHFxMT169ECj0fDEE08wZcoUOnbsyJ133nlJ8gswatQo7r//fs6ePQuAk5MTzzzzDPfeey8nT56kX79+tjZnn376Kc7OzgwcOPCS4wwcOBCDwcDnn3/O448/XrtPtB6QBNgOKlaCK6tCDXBheQLs5O5emyEJIZoIF08vut8+im4j7iIrPY198as58Od6CnNz2Pbzj2z7+Ud8WrUmov9AwvvG4OTuYe+QhWgydDodb775Ju+//36l7bt3777iY0aPHs3o0aMrbbvrrru46667Ltn3qaee4qmnnrrscfR6PTk5OdcRdcMkCbAd6MtLIKrSBaI4Pw8AJ/dmtRqTEKJpUalUNG/dluat2xIzbiLpO7eTvH41adu2cObIYdYdOcz6z+MI6dSViJiBtO4ajVans3fYQghRIyQBtoOKEghjNUognNxkBFgIUTs0Wh1tu0XTtls0xefzSdm0gX3xq8k8lMrh7Vs5vH0rjs4uhPXuR4f+A/EPDbvsR7FCCNFQSAJsB7Ya4CqMAF8ogfCoxYiEEMLK4OpGpyG30mnIrZw7cZzkDWtI3rCWgnNn2bXyN3at/I1m/i3o0P9mOvQfgJu3r71DFqJRWLdu3Q0fY8KECUyYMOGGj9MUSAJsB9UpgSiqKIGQEWAhRB3zahlIv7Hj6XPPOI7v3UNy/GpSt2wiJ+MkG7/5jI3ffk5gh5uIiBlIaHRv9I7Va/ovhBD2IgmwHVRMgrvWQhiKolBcMQLs4VHLUQkhxOWp1RqCozoRHNWJgcWPcnDLZvatX21bfvn4vt2sinuPdj160yFmIIERN6FWS0s1IUT9JQmwHdhGgE0WFEW5Yi1dWXERZpMJAIOMAAsh6gG9wYmImIFExAwk/0wWyRvWkhy/mpyMU9bvN6zFxcubDv0GEBEzEM+AlvYOWQghLiEJsB1ULIUMYLIothHhvyrMzQVAbzCg0zvURWhCCFFlbj6+9LzrHqLvHE3GwQMkx6/hwKZ4Cs6dZcuy79iy7Dv82rYjov9Awvr0x+Diau+QhRACkATYLvQXJcBlJkulhPhiRfm5ADi5edRBVEIIcX1UKhUB7cIJaBdO7AOTSdu2heT41aTv3EbmoVQyD6WydunHtOnagw4xAwnp1BWNVn79CCHsR34C2cHFI75XWw65OK+iB7BHbYckhBA1QqvXE9arL2G9+lKYm8OBjfHsi1/NmSOHObhlEwe3bMLg6kb7vjFE9B+Ib0gbaakmhKhzkgDbgVajRoWCguqqyyHbRoBlFTghRAPk7NGMrrfeQddb7+DM0XT2xa9h/4a1FOXlsuO35ez4bTleLYOIiBlIeN9YXDy97B2yEKKJuPxn76LWacsHPK7WCq2iBlhKIIQQDZ1PcAix90/i4feXctezswnr1Q+NTse5E8eI/2IxH/39Qf77yovs37geY2mJvcMVot6JjY1FpVLZvpo3b87f/vY3jh49Wq3jrFu3rtJxDAYDERERfPTRR7UUef0kI8B2olWD0cw1RoArSiBkBFgI0TioNRpCOncjpHM3SgoLSE34k33r13AqJZkju7ZzZNd29AYn2vXsS0TMzbRoHyElEkKUmzx5MnPnzkVRFI4ePcqTTz7JuHHj2LBhQ7WPlZKSgpubG8XFxSxfvpxHH32UNm3aMHDgwFqIvP6REWA7qSgDvlov4GJZBU4I0Yg5OrsQNXAoY+fOY+JbH9Fz1FjcfJpTVlzE3rUr+Gb2s8Q9/hCbvvuC3NOZ9g5XNFCKomAsNdvlS1Gu3u//YrGxsUydOpWpU6fi7u6Ot7c3M2fOrHQMJycn/Pz88Pf3p2fPnkydOpXt27fb7q8Y3f3ll1+IiorC0dGRnj17snfv3kvO5+vri5+fHyEhITz++OOEhIRUOlZjJyPAdlLeCriKI8AedRCREELYTzO/APqMvo/ed4/lxIF9JMevITXhT/KyTrP5+6/Y/P1XtGjfgQ79BxLWqy8OTs72Dlk0EKYyCx89sd4u557yVgw6h6ovCrN06VImTZrEli1bSEpKYsqUKQQFBTF58uRL9s3Ozubbb78lOjr6kvumT5/OW2+9hZ+fH88//zwjRowgNTUVnU53yb6KovDHH39w7Nixyx6rsZIE2E4u1ACbr7hPYcUIsCyCIYRoIlRqNYEdbiKww03c/ODDHNqawL71qzm6ZycnDyRz8kAyaxd/SJvuPYmIGUjwTZ1Qa2TVOdE4BAYGsmDBAlQqFWFhYezZs4cFCxbYEuD33nuPTz75BEVRKCoqol27dvzxxx+XHGfWrFkMHjwYsCbVLVu25Mcff2T06NG2fVq2tC5SU1paisViYe7cufTv378OnmX9IAmwnWhsI8BSAiGEEJejc3AkvG8s4X1jOZ99lv0b1pEcv4ZzJ46RsimelE3xODfzJLxvLBH9b8Y7qJW9Qxb1kFavZspbMXY7d3X07NmzUs17r169mD9/PubywbL77ruPf/3rXwCcPn2aV155hVtuuYVt27bh6upa6XEVPD09CQsLY//+/ZXOtWHDBlxdXSktLWXLli1MnToVT09PHn300Wo/z4ZIEmA7uVYXCLPJSElhASAJsBBCuHp60+OOu+l++yhOHz5Ecvwa9m9cT2FONknLfyBp+Q/4hrQhov/NtO8bK5+cCRuVSlWtMoT6zN3dnbZt2wLQtm1b4uLi8Pf355tvvuGhhx6q1rFCQkLw8PAAICIigsTERF5++WVJgEXtqqgBNl6hBrg4Px+wfhzo6OxSV2EJIUS9plKp8GsTil+bUGLun0j6jm3sW7+aw9u3kpWeRlZ6Gus/X0SrTl2JiBlI6y490F6m7lGI+igxMbHS7YSEBEJDQ9FcocynYntxcfEljwsKCgIgJyeH1NRUwsPDr3pujUZzyXEaM0mA7eRaI8AX1/+q1NKsQwgh/kqj1dG2e0/adu9JUX4eKZs3kLx+NZlpBzm8bQuHt23B0dmFsN79iYgZiF/bdvYOWYirOnbsGNOmTePhhx9m+/btLFy4kPnz59vuLyoqIjPT2hHl9OnT/Pvf/8bR0ZFbbrml0nHmzp2Ll5cXzZs351//+hfe3t6MHDmy0j5ZWVmUlJTYSiA+++wz7r777lp/jvWFJMB2olErgOqKSyEXywQ4IYSoMic3dzoPuY3OQ27j3InjJMevJnnDWgqyz7Fr5a/sWvkrzQJa0r5PDMayK3ffEcKeHnjgAYqLi+nRowcajYYnnniCKVOm2O7/+OOP+fjjjwFo1qwZUVFR/Prrr4SFhVU6zmuvvcYTTzzBwYMH6dSpE8uXL0ev11fap+IxWq2WwMBAHn74YWbPnl27T7AekQTYTipGgEuvUAJha4Hm0ayuQhJCiEbBq2Ug/e6dQJ8x93N87x72xa/m4JZN5Jw6webvvgDgh4N7iYwdRGh0b/SOBjtHLISVTqfjzTff5P3337/kvnXr1lX5OH379r1s71+w9huuTn/ixkoSYDu5sBDGFRJgGQEWQogbolZrCI7qRHBUJ8qKHyU1cRN7163i5P69nEjew4nkPayOe5/Q6N5ExAwksMNNUnImRBMhCbCdXGshDFsNsCyDLIQQN0xvcCIydhBhfWL437ff4K9Xc+DPteRmZpAcv4bk+DW4evnQof8AOvS/Gc+AlvYOWQhRiyQBthPtNUaAi8tLIAxuHnUUkRBCNA06F1d6DB9O77vHknHwAPvWryZl8wbOnztD4o/fkvjjt/i3DaNDzEDCevfD4OJ67YMKcYOqU+JwJVLeUHWSANvJtUaAK0ognKUHsBBC1AqVSkVAu3AC2oUzYPwU0rZtITl+Nek7t5FxKIWMQymsW/oRrbv2ICJmIK06dkWjlV+bQjQG8k62E42tDdrl/1KzTYKTBFgIIWqdVq8nrFdfwnr1pTA3hwMb17Nv/WrOHE3nYOImDiZuwuDmTnifGDrEDMS3VetKK3YJIRoWSYDtpMo1wDIJTggh6pSzRzO63jqSrreOJOvIYeuqc3+uoygvl+2//cT2337COzCYDjEDCe8bi0szT3uHLISoJrtOd42Pj2fEiBEEBASgUqlYtmyZ7T6j0cgzzzzDTTfdhLOzMwEBATzwwAOcOnWq0jGys7O57777cHNzw8PDg0mTJlFQUFDHz6T6bAthXCYBVhTlQh9gGQEWQgi78W3VmtgHHuLh95dy57OzaNerHxqdjrPHjxL/+SI+enQC/311Fgc2rsdYVmrvcIUQVWTXEeDCwkI6duzIxIkTueuuuyrdV1RUxPbt25k5cyYdO3YkJyeHJ554gttvv52kpCTbfvfddx8ZGRmsXLkSo9HIgw8+yJQpU/jyyy/r+ulUi6ZiKeTLTIIrKy7CbDIBYJAuEEIIYXdqjYbWnbvTunN3SgoKSE34k33rV3MqdT9Hdm7jyM5t6A1OhPXqS0TMIALCwqVEQoh6zK4J8LBhwxg2bNhl73N3d2flypWVtr3zzjv06NGDY8eOERQUxP79+/n999/ZunUr3bp1A2DhwoUMHz6c//u//yMgIKDWn8P10qqstb+XGwGumACnNxjQ6R3qMiwhhBDX4OjiQtSgoUQNGkpOxkmSN6wlOX4N+Wey2LNmBXvWrKCZfwsiBwymQ/+bpURCiHqoQdUA5+XloVKp8PDwAGDz5s14eHjYkl+AQYMGoVarSUxM5M4777zscUpLSyktvfBRVX5+PmAtuzAajbX3BMoZjUZbDXCp0XTJOfPPnQXA4OpeJ/GIG1dxneR6NS5yXRufmr6mLt6+9LjzHrrf8TdOpiSzP34th7ZsIifjJBu+XMKfX39KcMcudOh/MyGdu6HR6mrkvKKyi6+r2WxGURQsFgsWiyx73dBYLBYURcFU/kn4xe/VmvxZ3GAS4JKSEp555hnGjh2Lm5sbAJmZmfj6+lbaT6vV4unpSWZm5hWP9eqrrzJnzpxLtq9YsQInJ6eaDfwKtOUfjR09cZJffz1e6b6C4+kAlFoUfv311zqJR9SMv35qIRoHua6NT61d08A2BPoFUnAsnfzDKZScOc2RHUkc2ZGE2sER11ZtcWsThoOHjArXhpUrV6LVavHz86OgoICysjJ7h9QgbdmyhWHDhjFw4EC+/fbbGzpWjx49OHr0KLt376Z58+bX3L+srIzi4mI2bdoEVH6vFhUV3VAsF2sQCbDRaGT06NEoinLZ9bGr67nnnmPatGm22/n5+QQGBnLLLbfYkuvaZDQa2fj5KgC8ff0YPrxTpfv3rP6dzA2rCAhuxfDhw2s9HnHjjEYjK1euZPDgweh0MsLTWMh1bXzq+prmnDpJ8oY1HNiwlsLcHPJS9pKXspfmrdsS3n8gYb364eDsXOtxNHYXX1ez2czx48dxcXHB0dHR3qE1SN988w1Tp05l0aJFFBQUXHdJ6Z9//klpaSmjRo3ixx9/ZMaMGdd8TElJCQaDgd69exMfH1/pvVrxiX1NqPcJcEXye/ToUdasWVMpQfXz8yMrK6vS/iaTiezsbPz8/K54TAcHBxwcLq2t1el0dfZLzrYSnEW55Jyl5V0sXDyayS/dBqYu/w+JuiPXtfGpq2vqG9wK3+CJ9B87niO7trN37UrStm3h9OFDnD58iD+/WEzbHr2IHDCYoIgoVGq7Nmdq8HQ6HWq1GpVKhVqtRq1WWz9OL7VPhw6tg0OVJ0PGxsYSFRWFo6Mjn3zyCXq9nkceeYTZs2dz5MgRQkJC2LFjB506dQIgNzeXZs2asXbtWmJjYwHYt28fzzzzDPHx8SiKQqdOnViyZAlt2rRhwoQJ5Obm0rlzZ9555x1KS0u59957efvtt9Hr9bY4CgoK+Pbbb0lKSuL06dN8+umnPP/887b7161bx4ABA/j555957rnnSE1NpVOnTnzyySdERkZWek6LFy/m3nvvJSYmhieeeIJnn332mq9DxfXTli86c/F7tSbfs/U6Aa5Ifg8ePMjatWvx8vKqdH+vXr3Izc1l27ZtdO3aFYA1a9ZgsViIjo62R8hVprnKUsi2HsDSAUIIIRoFtUZD6y7dad2lO0X5eezfsI69a1dw9vhRDmxcz4GN63Hz8SUiZhARMQNx9732R8Wiakylpbw9/m67nPvxpd+jq8Yo9NKlS5k2bRqJiYls3ryZCRMm0KdPH0JDQ6/52JMnT9K/f39iY2NtA4YbN2601dICrF69GkdHR9atW8eRI0d48MEH8fLy4uWXX7bt8+2339K+fXvCwsIYN24cTz75JM8999wlifz06dN566238PPz4/nnn2fEiBGkpqbaktTz58/z3XffkZiYSPv27cnLy2PDhg3069evyq9HbbJrAlxQUMChQ4dst9PT09m5cyeenp74+/tz9913s337dn7++WfMZrOtrtfT0xO9Xk94eDhDhw5l8uTJfPDBBxiNRqZOncqYMWPqdQcIuPpCGNIDWAghGi8nN3e63noHXYbfzunDh9i7diUHNq4n/0wWm7//ks3ff0lQZEciBwymbY9e0g2oCYmKimLWrFkAhIaG8s4777B69eoqJcDvvvsu7u7ufP3117YktF27dpX20ev1LFq0CCcnJyIiIpg7dy7Tp0/n3//+N+ryTx/i4uIYN24cAEOHDiUvL4/169fbRpkrzJo1i8GDBwPWxL1ly5b8+OOPjB49GoCvv/6a0NBQIiIiABgzZgxxcXGSAAMkJSUxYMAA2+2Kutzx48cze/ZsfvrpJwDbcH+Fi4f7v/jiC6ZOncrAgQNRq9WMGjWKt99+u07ivxHaqyyFLMsgCyFE46dSqfBrE4pfm1BiHpjEoa0J7F27kmN7dnJs7y6O7d2Fg5Mz7fvEEBk7iOZtQqW38HXQOjjw+NLv7Xbu6oiKiqp029/f/5JSzyvZuXMn/fr1u2qZQMeOHStN9u/VqxcFBQUcP36c4OBgUlJS2LJlCz/++KM1fq2We+65h7i4uEsS4F69etm+9/T0JCwsjP3799u2LVq0yJZIA4wbN46YmBgWLlyIq6trlZ5TbbJrAhwbG4uiXJoAVrjafRU8PT3r/aIXl3O1EWBZBlkIIZoWnd6B8D4xhPeJIS/rNPvWr2bf+lXkn8li18pf2bXyV7wDg4kcMJjwfgPk90M1qFSqapUh2NNfk1eVSoXFYrGNzl6cF/21JZjBYLjh88fFxWEymSp9iq4oCg4ODrzzzju4V7E0Mzk5mYSEBLZs2cIzzzxj2242m/n666+ZPHnyDcd6o6Ta3k6uVgMsJRBCCNF0ufs2p/ff7uWhtz/hbzNfJrxvLFqdnrPHj7Lu00/48JEH+Gn+K6Rt24LFbLZ3uKIO+Pj4AJCRkWHbtnPnzkr7REVFsWHDhqv2yt21axfFxcW22wkJCbi4uBAYGIjJZOLTTz9l/vz57Ny50/a1a9cuAgIC+OqrryodKyEhwfZ9Tk4OqamphIeHA9ZEun///uzatavSsaZNm0ZcXNx1vw41qV5PgmvMtOrLrwRnNhkpKbR2gZAEWAghmi6VWk1QZEeCIjtSMrGAlE3x7F27ksy0gxzcsomDWzbh7NGMDjEDiYwdhGdAS3uHLGqJwWCgZ8+evPbaa4SEhJCVlcULL7xQaZ+pU6eycOFCxowZw3PPPYe7uzsJCQn06NGDsLAwwNpjd9KkSbzwwgscOXKEWbNmMXXqVNRqNT/99BM5OTlMmjTpkpHeUaNGERcXxyOPPGLbNnfuXLy8vGjevDn/+te/8Pb2ZuTIkRiNRj777DPmzp17SVeIhx56iP/85z/s27fPVhtsLzICbCe2GuC/JMDF5T3uVGo1js4udR2WEEKIesjR2YWOg4dz3ysLGP/GO3S9dSQGN3cKc3PY+r/vWfzPR/hq5nT2rFlBWXHNLRYg6o9FixZhMpno2rUrTz75JC+99FKl+728vFizZg0FBQXExMTQtWtXPv7440plFQMHDiQ0NJT+/ftzzz33cPvttzN79mzAOmo7aNCgy5Y5jBo1iqSkJHbv3m3b9tprr/HEE0/QtWtXMjMzWb58OXq9np9++olz585ddjXe8PBwwsPD68UosIwA24mm/E+Pv5ZAXFz/K/0ghRBC/JV3UCtiH3iIfveO5/D2rexdu5L0nds4lbqfU6n7WbPkQ8J69iNywCBatI+QiXMNxLp16y7ZtmzZMtv34eHhttXRKvx1rlRUVBR//PHHVc8zZ86cy66Gu3z58is+pkePHrZzVcTZt29f9u7de8m+o0aNwnyV0pzk5OSrxldXJAG2kyuOAMsEOCGEEFWg0eoI7dGb0B69KcjJJjl+DXvXrSLn1An2rV/FvvWr8PDzJzJ2MB1ibsbV09veIQtRb0gCbCe2LhB/GQG2tUDzaFbXIQkhhGigXJp50uOOu+l++yhOpR5g37qVHNi0gdzMDP78+lM2fvM5rTp2JnLAYFp3jUYrKxuKJk4SYDu50AfYgqIoto+oimQEWAghxHVSqVS0CAunRVg4A8ZPITVxI3vXruTE/r2k79xG+s5tOLq6Ed43hsjYwfi2am3vkEUdWbJkSY0c51otbBsKSYDtpKINmqKA2aKgLd8gyyALIYSoCTpHRyJiBhIRM5CcjJPlvYVXU5B9jh2/LWfHb8vxDWlD5IDBtO8Tg8HF/osTCFFXJAG2E+1F89vKzBa05bPiistLIAxuHnaISgghRGPUzL8Ffcc8QO/R93F09072rl3Joa0JZKWnsSY9jfWfxdG2W08iBwwm6KaOqNUae4csRK2SBNhOtBdNyjWaFNBbv68ogXCWHsBCCCFqmFqtIaRTV0I6daUoP48DG9ezd+1KzhxNJ2XzBlI2b8DVy4eI2IFExAzCo7mfvUMWolZIAmwnahWoVNYSiFKzGbBOSLBNgpMEWAghRC1ycnOny7Db6TLsdk6np7F37UoO/LmO8+fOkPDfr0n479cERkQRGTuI0Oje6BwaxnLCQlSFJMB2olKBTqOmzGTBaL5QTF4ok+CEEELUseYhbWge0oaYcRM5lJTA3rUrObpnJ8f37eb4vt2sXvQB7Xv3JyJ2EP6hYdJbWDR4kgDbkb48Aa7oBawoyoU+wDICLIQQoo5p9Xra9+5P+979yT+bRfL6Nexdv4q805nsXv07u1f/jmeLQCIHDKZDvwE4S8tO0UDJUmN2pCvv/FCxGlxZcRFmkwkAg3SBEEIIYUdu3r70HDWGSW9+xOgXX6FDvwFo9Q5knzxO/OeL+PDR8Sx74yUObU2w/e4SjcPmzZvRaDTceuut1/X4devWoVKpbF8Gg4GIiAg++uijGo70+skIsB3py1tBVIwAV0yA0xsM6PQO9gpLCCGEsFGp1QRGRBEYEcXNEx8hZfMG9q5dScbBFNKSEkhLSsDJ3YMO/W8mMnYQXi2D7B2yuEFxcXE89thjxMXFcerUKQICAq7rOCkpKbi5uVFcXMzy5ct59NFHadOmDQMHDqzhiKtPRoDtSFfe+qy0PAG+UP/rYaeIhBBCiCtzcHImauBQ7n1pPhPmv0e3EXfh5O5BUV4uSct/YMlTf+fLF55i9+rfKS0qsne4DUpsbCyPP/44M2bMwNPTEz8/P2bPng3AkSNHUKlU7Ny507Z/bm4uKpWKdevW2bbt27eP2267DTc3N1xdXenXrx9paWkATJgwgZEjRzJnzhx8fHxwc3PjkUceoaysrFIcBQUFfPPNNzz66KPceuutlyygUTG6+8svvxAVFYWjoyM9e/Zk7969lzwnX19f/Pz8CAkJ4fHHHyckJITt27fXyOt1oyQBtiN9eQJcUQJRnFfeA1jKH4QQQtRzXi2DiBk3kSnvLeGO6TNp060nKrWajIMprPzoHT54+H5+e2c+x/ftRrFY7BanoihYysx2+aruimlLly7F2dmZxMRE5s2bx9y5c1m5cmWVHnvy5En69++Pg4MDa9asYdu2bUycOBHTReUpq1evZv/+/axbt46vvvqKH374gTlz5lQ6zrfffkv79u0JCwtj3LhxLFq06LLPY/r06cyfP5+tW7fi4+PDiBEjMBqNl41NURR+//13jh07RnR0dDVekdojJRB2dEkJRH4uID2AhRBCNBwarZa23aJp2y2awtwc9m9Yy561K8k+eZzkDWtJ3rAW9+Z+RMYMokPMQNy8feo0PsVo4dSLm+r0nBUC5vZGpa/6oiJRUVHMmjULgNDQUN555x1Wr15NaGjoNR/77rvv4u7uztdff41OZ22t2q5du0r76PV6Fi1ahJOTExEREcydO5fp06fz73//G7XampPExcUxbtw4AIYOHUpeXh7r168nNja20rFmzZrF4MGDAWvi3rJlS3788UdGjx5t26dly5YAlJaWYrFYmDt3Lv3796/y61GbJAG2I/1fJsEVlY8ASwmEEEKIhsjZoxndRtxF19vuJPNQqrW38Kb15J3OZOO3n7Pxuy8IvqkTkQMG07ZbT7R6vb1DrleioqIq3fb39ycrK6tKj925cyf9+vWzJb+X07FjR5ycnGy3e/XqRUFBAcePHyc4OJiUlBS2bNnCjz/+CIBWq+Wee+4hLi7ukgS4V69etu89PT0JCwtj//79lfbZsGEDrq6ulJaWsmXLFqZOnYqnpyePPvpolZ5TbZIE2I7+OgJsqwGWEgghhBANmEqlwj80DP/QMGLHP8TBLZvZu3Ylx/ft5ujuHRzdvQNHZxfa940lcsBgmoe0qb1YdGoC5vauteNf69zV8dfkVaVSYbFYbKOzF5ci/LXcwGAwXGeUF8TFxWEymSpNelMUBQcHB9555x3cq5mfhISE4OHhAUBERASJiYm8/PLLkgA3dRWT4MpsNcC5ABhkBFgIIUQjoXNwpEO/AXToN4Dc05nsW7+KfetWc/7cGXb+8TM7//gZn+AQIgcMJrxvLAZXtxo9v0qlqlYZQn3k42MtG8nIyKBz584AlSbEgXX0eOnSpRiNxiuOAu/atYvi4mJbspyQkICLiwuBgYGYTCY+/fRT5s+fzy233FLpcSNHjuSrr77ikUcesW1LSEggKMja8SMnJ4fU1FTCw8Ov+jw0Gg3FxcVVf+K1SBJgO6qYBHehBthaAuFc/teSEEII0Zh4NPejz+hx9Lp7LMf27GLvulUc2rqZM0fTWbvkI+I/X0Sbbj2JHDCY4KhOqNUNO3GtKQaDgZ49e/Laa68REhJCVlYWL7zwQqV9pk6dysKFCxkzZgzPPfcc7u7uJCQk0KNHD8LCwgAoKytj0qRJvPDCCxw5coRZs2YxdepU1Go1P/30Ezk5OUyaNOmSkd5Ro0YRFxdXKQGeO3cuXl5eNG/enH/96194e3szcuTISo/LysqipKTEVgLx2Wefcffdd9fOi1RNkgDb0YWFMKwfaRTJMshCCCGaALVaQ6uOXWjVsQvFBec5sHE9e9euJCs9jdSEP0lN+BMXTy8iYgYSETuIZn7X14e2MVm0aBGTJk2ia9euhIWFMW/evEojtV5eXqxZs4bp06cTExODRqOhU6dO9OnTx7bPwIEDCQ0NpX///pSWljJ27Fhbq7W4uDgGDRp02TKHUaNGMW/ePHbv3m3b9tprr/HEE09w8OBBOnXqxPLly9H/paa7IvHWarUEBgby8MMP285nb5IA29GFGmAzcFECLF0ghBBCNBEGF1c6D7mNzkNuI+vIYfatW0Xyn+soyD5H4o/fkvjjt7RoH0HkgMG069kHveON17rWRxf3862wbNky2/fh4eFs2lS5m8Vf25NFRUXxxx9/XPU8c+bMuaT1GcDy5cuv+JgePXrYzlURZ9++fS/b+xesPY2r2wKurkkCbEc6Wx9gBbPJSElhAQAGGQEWQgjRBPm2ao3vhCn0u+9BDm9LZO/alRzZtYOTB/Zx8sA+1iz+kLBe/YgcMJiAdu1RqVT2Dlk0UJIA25FtBNhsoTg/H7AuOWlwcbVnWEIIIYRdaXU62vXsS7uefTmffZbk9WvYu24luZkZ7F27gr1rV9AsoCWRsYPo0P9mHOT3pqgmSYDtqKIGuMxksU2AM7i6oVLLAn1CCCEEgKunN9F3jqbHyL9x8sA+9q5dRUrCBnJOnWDDl0v48+tPCe7YhRIXD8wmI6jkd+jl/HVJ4+vVEMobqkISYDvSX9QGzVhSYt3WSGubhBBCiBuhUqloGR5Jy/BIbn5wCimb/2TvulWcSknmyI4kAOJ2JBIxaCjekV3sHK2o7yQBtiPdRW3QLGbrWt1qrVwSIYQQ4mr0BiduuvkWbrr5FrJPnWD36j/YufoPSgrOsz9+LV1atCIn8xRuHp44urqg0cjvVlGZ/I+wo4oaYKPZgtls7QSh0UjPQyGEEKKqPANa0mfMA+S6eBIR6M+hbVtBBaayMs6fO0NB9lkcnJxwdHXDwclZJs4JQBJgu9LLCLAQQghRI1RqNa06diUwshOH09JwaeaJpbQUY2kJJYWFlBQWotZoMLi44ujqhs7Bwd4hCzuSbMuOdNrySXBmC2ZTeQIsI8BCCCHEDVGp1Rhc3XD0ccRYWkpJQT7F589jMZspzMulMC8XnYODdR8XV/nd2wRJAmxHlUaAyxfDUEudkhBCCFFjdA4O6Bx8cPH0prSokJLz5yktKsRYWoqx9Aznz53FwdkZg6sbeoOTlEg0EZJt2dGFhTAulEBopARCCCGEqHEqlQpHZxccnV0wm02UFBRQfD4fU2kpJQUFlBQUoNZqMbi4YnB1Q/uXZX2FlaIoYFZQzApYLKBWo3ZoeCPo0izPji4shWzBUj4JTmqAhRBCiNql0WhxdvfAu2UQXi2DcHL3QK3RYDGZKMzN4ezxo5w7eZyi/Dzb7+fGTlEUJowfj0qlsn15eXoxZOAtbFu/BePpIspOFWA8WYAxsxDTmSJM50qwFBovOdaRI0cqHUev19O2bVteeumletNDWLItO6q8FLLUAAshhBB1raJEwtXLi9KiIorP51tLJEpKMJaUcP7sGRycXTC4ujbYEgnFUj5ia7agWCpGcC22kdyK0VxLkYlbYgfx8fz3ATh95jSz3vg3d947ikOJyZUPqlGj0qhQaa/8eqxatYqIiAhKS0v5888/eeihh/D392fSpEm1+XSrREaA7Uh/0UpwlvIEWHoVCiGEEHVPpVLj6OxCM78AfIJCcPXyRqvXoygKJQXnyck4xdljRziffRZTWVmNnz82NpbHH3+cGTNm4OnpiZ+fH7NnzwYujKju3LnTtn9ubi4qlYq1q9dgKTVjKTaye+tObh06HDdXN1xdXOkb3Zv9m3ZjPFXAhHvvZ+QdI5kzcxZ+rQLwDPTl0SenUlpQDGYLlA/MOjg44N/CH/+gFnTu0ZUZ02dw/NQJciwFaH2dOFl6BodAN35Yv5yYkYNw9nUnMjKS9evXX/KcvLy88PPzIzg4mPvuu48+ffqwffv2Gn/trodkW3Z08Upw0gZNCCGEqHmKomA0Xvox/bXonJzRGpwwlZVSUnCekoLzGItNlBSXkJt1Bp2jI46urjg6OV/x01udTletEeOlS5cybdo0EhIS2LxpEw9OnEiv7j1pG9IGAFN+KcazxWBWKMspsG7LLsF0poiTGacYcMvN9O/Vjz++Xo6rqyubtyZiMlrzC1SwduN6HJ0MrFr+B0dPHOehf0zB29+Hl//9MiqNCrWzDrVRi665MwAFBQV8/eO3tG3bFp+WzVGr1ajKc5fp06fz5ptv0qFDB/7zn/8wYsQI0tPT8fLyuuxzS0pKYtu2bTzwwANVfj1qk2RbdnRxDbAshCGEEELUPKPRyCuvvGKXcz///PPo/zKZ7krlCIrRwk3hkTz38NNgttBq0CjeiVrIql9XEDJuovWxxSaUkvKE1nxRLa1GzQeff4K7uztfLv0cvaMDqFV06BEFGhUqjRq1kw69g54lXyzFycmJjnRlbnYm06dP5+XXXkGltuYkP//8My4uLgAUFhbi7+/Pzz//jFpduWhg6tSpjBo1CoD333+f33//nbi4OGbMmGHbp3fv3qjVasrKyjAajUyZMkUSYPGXLhAmGQEWQgghGhNTfilqteVCva1FAcsVJoFZFCLDOoDJYtvk19yPM9lnUTlYcwOVsw6NhwMqjRqt3lqGofU2oPd3Zs/BffSL6Y/Bx/WK8XTs2BEnJyfb7V69elFQUMDx48cJDg4GYMCAAbz/vrUGOCcnh/fee49hw4axZcsW2z4Vj62g1Wrp1q0b+/fvr3S+b775hvDwcIxGI3v37uWxxx6jWbNmvPbaa1V5+WqVZFt2ZBsBloUwhBBCiFqh0+l4/vnnr/vximJNWq0TxS5MGKuYPKaYzChmBZVyaamDpljBorpM+YVKhUqjKh+dVYFGDVo1Di4GtD4Ga5mBRoXGoAMHNQ7e1qRV46xD42IdUTYXWMoPZT2vwWC47ud4MWdnZ9q2bWu7/ckn1pHljz/+mJdeeqlaxwoMDLQdKzw8nLS0NGbOnMns2bNxdHSskXivl0yCsyPdxZPgzLIQhhBCCFHTKtpwXe5Lp9WhVWnRKmo0JhWaUlAXWVCfN6PKNUG2EdXZMlTnjKhzTajzzWgKLWiKQVumQmdWo1fpcNDq0et06HU6tDoNai2gMVNqKabYXECZthTcNGibO6ELcEEX4IzOzxmdjxNaTwNadwdrRwWdGrWDFpVWXal22MfHB4CMjAzbtosnxAFERUWxYcOGq9Y779q1i+LiYtvthIQEXFxcCAwMvOrrp1arKz2u4rEVTCYT27ZtIzw8/KrXQqPRYDKZKKuFSYTVZdcEOD4+nhEjRhAQEIBKpWLZsmWV7lcUhRdffBF/f38MBgODBg3i4MGDlfbJzs7mvvvuw83NDQ8PDyZNmkRBQUEdPovrp5eFMIQQQoiap4BismAps3ZHMBeUYcorxZRdgvFMEcbMQmtP21MFmE4XYjpTjDm7BHNeKZYCI5ZiE0qZ2VqOUFGxoLYmqCpHLWonHWo3PRoPB7ReBrS+Tuj8ndG1cMGxpTsOfq7gqqFUVUyxqYCCwhyyz5zkXMZxCvOybWWPVWUwGOjZsyevvfYa+/fvZ/369bzwwguV9pk6dSr5+fmMGTOGpKQkDh48yGeffUZKSoptn7KyMiZNmkRycjK//vors2bNYurUqZXqe0tLS8nMzCQzM5P9+/fz2GOPUVBQwIgRIyqd79133+XHH3/kwIED/OMf/yAnJ4eJEydW2ufcuXNkZmZy4sQJfvvtN9566y0GDBiAm5tbtZ5/bbBrtlVYWEjHjh2ZOHEid9111yX3z5s3j7fffpulS5cSEhLCzJkzGTJkCMnJybah8/vuu4+MjAxWrlyJ0WjkwQcfZMqUKXz55Zd1/XSqraIGuNQkXSCEEEKI6jAXGq0LMmQVUZpRQJuDLpw7uocySxmmHg4YnYrRaKuwiMVlyhFU6gu3K8oRqtPNQaPT4dLME2ePZhhLSig+n09JYQFmo5GC7GwKsrPRG5wwuLri4OxyyQSzy1m0aBGTJk2ia9euhIWFMW/ePG655Rbb/V5eXqxZs4bp06cTExODRqOhU6dO9OnTx7bPwIEDCQ0NpX///pSWljJ27Fhbq7UKv//+O/7+/gC4urrSvn17vvvuO2JjYyvt99prr/Haa6+xc+dO2rZty08//YS3t3elfQYNGmR9PTQa/P39GT58OC+//HKVX8faZNdsa9iwYQwbNuyy9ymKwptvvskLL7zAHXfcAcCnn35K8+bNWbZsGWPGjGH//v38/vvvbN26lW7dugGwcOFChg8fzv/93/8REBBQZ8/lelTUABvNFswm6QIhhBBC/JWlxITxtHXU1nS6COPpQoyni7AUVP6o3wM9ppxCLK4qwMG68eIEVqOydjrQXJzwqkFFrS1uoVKp0BsM6A0GXC0+lBZal18uKy6mrLiIsuIiVOozOLq4sOL339A5VK6LvfiT8fDwcDZt2lTp/r+uqhYVFcUff/xx1ZjmzJnDnDlzLnvfkiVLWLJkSZWeW3h4OImJiZe9r1WrVvVmxbcrqbfDjenp6WRmZtr+egBwd3cnOjqazZs3M2bMGDZv3oyHh4ct+QXrXxtqtZrExETuvPPOyx67tLSU0tJS2+38/HzA2irlenoFVlfFOdSKNektM1lsTbUVlapOYhA1q+KaybVrXOS6Nj5yTesvpcyMKasYU1aR9d/T1n8t+VeuF9U0c0Dj64Ta24GUjDQiukehuGkpKjmD1teA9hoTrRQUa7lEHSVrDs4uODi7YDGZKC7vLWw2GinOz6c4Px+NTofB1Q1HF5canxOkKAqKomCxWK6981VUPN5isdzwsa50fEVRMJWXiVz8Xq3J9229TYAzMzMBaN68eaXtzZs3t92XmZmJr69vpfu1Wi2enp62fS7n1VdfvexfPytWrKjUHqS2bdwQD2ixKNZVXgAOHkrj3K+/1lkMomatXLnS3iGIWiDXtfGRa2o/Kgs4FmswFGls/xqKNDiUXvkT0DK9mWKDmWInMyVO5f8azFgqHmIBmsP6Y1vRarX4+flRUFBQLyZbXZFag9bVHY3JiLm0FHNZaXmJxDkKss+h1unRODig1jvUyAi10WjEZDLZBv2uV8U8q8LCwhs+1uWUlZVRXFxsG+2++L1aVFRUY+eptwlwbXruueeYNm2a7XZ+fj6BgYHccsstdVKYbTQaWblyJYMHDeD5pA0A+Pn5cSg9lQ4REXQZPrzWYxA1y3ZNBw9Gp9PZOxxRQ+S6Nj5yTeuOYrZgPldSaTTXlFWE+VzJhYllf6F21qFtbkDj62QdwW3uhNbHgNpw9XTl4utqNps5fvw4Li4udm+1VR2KopSXSJzHWFKMxViGxViGWl2Ig4srBhdXtA4O1338zz//vEbijIyMtC3eVRtKSkowGAz07t2b+Pj4Su/Vmky4620C7OfnB8Dp06dtxdgVtzt16mTbJysrq9LjTCYT2dnZtsdfjoODAw6X+U+k0+nq9Aei00UxWMzWjxF0er38UG7A6vr/kKgbcl0bH7mmNUexKJizS6y1uZlFGLPK63XLl+y9HJVBi665k/XLz9naRaG5k63H7fXS6XTW5XrLW3dVZXJZfeLk5o6TmzsmYxkl589TfD4fs8lEcX4exfl5aPX68hIJ10bbNari+mnLn9/F79WafM/W21cvJCQEPz8/Vq9ebUt48/PzSUxM5NFHHwWsq5Dk5uaybds2unbtCsCaNWuwWCxER0fbK/Qqq+gDDGAyldcFSx9gIYQQ9ZCiKJhzSzGeLsJ0cbJ7uqjS6mUXU+k16Jo7WfvfNndG52dNdNWu+lqbeNYYaHV6XDy9cG7mSVlxMSXlXSRMZWWcP3eW89lncTA4Y3B1w8HJybaMsag6u2ZbBQUFHDp0yHY7PT2dnTt34unpSVBQEE8++SQvvfQSoaGhtjZoAQEBjBw5ErDOQBw6dCiTJ0/mgw8+wGg0MnXqVMaMGVPvO0BA+exQjZoyswWTUVaCE0IIYX+KomA5b7R1W7B1X8gqQim9wkffWjU6X4MtydU2d7aO6Lo7WFuK2UF970JQFSqVCgcnJxycnHA1mykp7yJhLCmhtKiQ0qJC1BoNji6uGFxd0dZQvbA9VUysq+3nYdcEOCkpiQEDBthuV9Tljh8/niVLljBjxgwKCwuZMmUKubm59O3bl99//71STc8XX3zB1KlTGThwIGq1mlGjRvH222/X+XO5XnqtutJSyI31Iw0hhBD1j7nQaB3NPV1kS3aNp4tQiq+wUINGhdbbYF3FzNfJluxqPR3tluj+lU6nQ6VScebMGXx8fBp8Qngxtd4BZy8fTGVllBZaE2BjWRml2efIyz6HVqfHwdkZByfnBpdPKIpCWVkZZ86cQa1W13qJkl1fndjY2Kv+haZSqZg7dy5z58694j6enp4NYtGLK6kogzDLQhhCCCFqia2X7ulCTJlX7qVrowKtl8FavuDnbKvX1XobrL1z6zGNRkPLli05ceKErcNSY6UoCmajEWNJMcay0guTC1Wg1Tmgc3REq29Y5SZOTk4EBQU17hFgcWExDNsIsJRACCGEuE6WMjOmrKLy+lxrna7pdCHmvKv00vV0vDAhrbmztV7XxwmVrn4nulfj4uJCaGhok+r3XFpYyOEdSRzaupmzx47Ytju4uNC2aw/adu+NZ4uW9guwCjQaDVqtFlUdrIkgCbCdVSyHXJEAyyQ4IYQQ16KYLBizii4ku+UjuuacK7cY07jrbbW5tmTX1wm1Q+MceNFoNE1qUMnR0ZHOg4bQedAQzh4/yr71q0mOX0POsSNsPXaErT9+i29IGyJiBhHeNwaDa+23fa3PJNuys7+OAKu1TefNKoQQ4uoUswXTuRJbbW5Fva7pXLF18YfLULvoKo/mln9/rV66ovHwDgwmZtxE+o0dT/rObexbv4q0pC1kpaeRlZ7G+s/iaNOtB5Gxg2nVsUuTnIAv7wY705ePAFvKm0prNNKXUgghmpoLvXQvjOaaThdiPHOVXrqOWltbsYuT3RvtpSsaD7VGQ5uuPWjTtQdF+Xkc2BjPvnWryDqSxsHETRxM3ISzRzPC+w0gMnYQXi2D7B1ynZEE2M4qRoArEmAZARZCiMZLURTMeaXltbkXJbtZRSjGKvbSbW7tviC9dEV1OLm502XYCLoMG0HWkcPsW7+a/RvWUpibQ9LyH0ha/gN+bdsRETOI9r374+jiYu+Qa5UkwHZWMQKsmKUGWAghGou/9tK9ONmtSi9dbfkKafbupSsaJ99WrfFt1Zr+903g8I4k9q1bTfqOrWQeSiXzUCrrPv2Ytt16Ehk7iKCoTqjVjW9wTrItO9PZSiCkC4QQQjRUllITpYfyKE3LpSyjANPpIixFV+ilq1ah9THYShcqWo3Vp166omnQaHWEdu9FaPdeFOXlsv/Pdexdt4qzx46QsnkDKZs34OLpRYf+NxMRMwjPgBb2DrnGSAJsZxUlEIqtBEIuiRBC1HeKomDMKKQkNYfS1BxKj+SD5S+1uhf30r1oRLch9NIVTY+Tuwddbx1Jl+F3kJWeZi2R+HMdBdnn2LLsO7Ys+46AduFExA4krFd/HJyc7B3yDZFsy850msoJcENbuUUIIZoKc6GR0oM5lKRav/66iITWyxGHds3QB7lZR3cbeC9d0TSpVCqat25L89Zt6T9uIoe3b2HfulWk79jGqdT9nErdz9olHxPaoxcRsYMIiohCpW54/88l27Izh4oRYEv5CLCUQAghRL2gmBXKjufbEl7jyYJKPXZVejUObTxwbNcMx3bN0HoZ7BesELVAq9PRLroP7aL7UJCTzf4Na9m7bhXZJ4+z/8917P9zHUGRHfnbzJftHWq1SQJsZxVLIdtKIGQSnBBC2I0pt5TS1BxKUrMpOZSLUlJ5wprO3xmH8oTXIdgNlbbhjXwJcT1cmnnS/fZRdBtxF5lpqexbt4oDG+MJiuxo79CuS7Wzrd9//x0XFxf69u0LwLvvvsvHH39Mhw4dePfdd2nWrFmNB9mYVdQAY5E2aEIIUdcUo4XS9DzbKK8pq6jS/WonLQ6hzXAMbYZjOw80bg52ilSI+kGlUuHfNgz/tmHEPjDZNom/oal2Ajx9+nRef/11APbs2cNTTz3FtGnTWLt2LdOmTWPx4sU1HmRjptOoQVFAsfZ/1GhlIQwhhKgtiqLgUKymaHMGxrR8Sg/nVe6/qwJ9oKt1hLddM/QtXaUzgxBXoNXrgYa58Eq1E+D09HQ6dOgAwH//+19uu+02XnnlFbZv387w4cNrPMDGTq9Vo75oPUupARZCiJplKTFRmpZLSWoOxSk5ROZ6cH7nUdv9Gje9razBsa0HaicZiBCisat2AqzX6ykqsn5EtGrVKh544AEAPD09yc/Pr9nomgC9Ro1auZAAa6QGWAghbohiudCirCQ1m7Kj5yu1KLOoFBxbe2AI87ROXmvuJCuqCdHEVDvb6tu3L9OmTaNPnz5s2bKFb775BoDU1FRatmxZ4wE2dnqtGs1FCbDUAAshRPWZC8ooPWgd5S05eJkWZd4Ga7LbxpW1KZsZOqIXOp2M9ArRVFU7AX7nnXf4+9//zvfff8/7779PixbWVUF+++03hg4dWuMBNnY6jRo1F2YZSxcIIYS4NluLspTyFmWn/tqiTINDG3ccw6wT2CpalBmNRiyH7BS0EKLeqHa2FRQUxM8//3zJ9gULFtRIQE2NXnuhBEKt0cjHcEIIcQWm3BLrymspOdYWZaWXtiirmLwmLcqEEFdzXcONaWlpLF68mLS0NN566y18fX357bffCAoKIiIioqZjbNQurgGW0V8hhLhAMZopTc+nJCWbkoM5mLKKK91va1HWzjrKq3FrmLPRhRB1r9oZ1/r16xk2bBh9+vQhPj6el19+GV9fX3bt2kVcXBzff/99bcTZaOm0ajRcGAEWQoimSlEUTGeKbT15Sw/ngekvLcqC3Gwrr+lauEiLMiHEdal2Avzss8/y0ksvMW3aNFxdXW3bb775Zt55550aDa4pcLh4BFgrI8BCiKbFUmKi9FCuLek155ZWul/jrreO8oY1w7GNtCgTQtSMamdce/bs4csvv7xku6+vL2fPnq2RoJoSnVZlS4A1kgALIRo5xaJgPFVgS3jLjuVzUSt00KpwCHG3jfJqfaVFmRCi5lU74/Lw8CAjI4OQkJBK23fs2GHrCCGqTq/R2BbCkBIIIURjZC4oo+RgLqUp2ZQczMVSePkWZQ5hzXAIcUetl5+FQojaVe0EeMyYMTzzzDN89913qFQqLBYLGzdu5Omnn7YtiiGqTqe5aARYJsEJIRoBxWyh7Oh5W09e48mCSver9Boc2npcGOX1dLRTpEKIpqraGdcrr7zCP/7xDwIDAzGbzXTo0AGz2cy9997LCy+8UBsxNmrWhTCsrXxkBFgI0VCZsksoOZhDSUoOpWmXaVEW4IxjO08c23mgD5IWZUII+7qupZA//vhjZs6cyd69eykoKKBz586EhobWRnyNnl6jtpVASA2wEKKhsJSZKU3Po7S8ltd05i8typz/0qLMVVqUCSHqj+vOuIKCgggKCqrJWJqkSgthSAIshKinFEXBlFV0oUVZeh6YLlp6TV3eoqy8Y4MuQFqUCSHqr2pnXBMnTrzq/YsWLbruYJoinabySnBCCFFfWIpNlBzKtY3ymvP+2qLMAcewZtaR3rYeqA3yR7wQomGo9k+rnJycSreNRiN79+4lNzeXm2++ucYCayr0WvVFXSDkl4cQwn4Ui4Lx5EUtyo5fqUWZJ45hzdD6GKRFmRCiQap2xvXjjz9ess1isfDoo4/Spk2bGgmqKdFpLkyC02hlBFgIUbfM58ts3RpKD+ZgKTRVul/rY7B1a9BLizIhRCNRI0OOarWaadOmERsby4wZM2rikE2GQ6UaYFnhSAhRuxSThbJj+dakNyUHY0ZhpftVDn9pUdZMWpQJIRqfGvvMPS0tDZPJdO0dRSU6jVoWwhBC1CpTdsmFyWuHclHK/tKirIXLhVHeIFdUGmlRJoRo3KqdAE+bNq3SbUVRyMjI4JdffmH8+PE1FlhTUakLhCTAQogaoFgUSg/lUnIg29qi7OxfW5TprCuvtWuGY6gHGhdpUSaEaFqqnQDv2LGj0m21Wo2Pjw/z58+/ZocIcSnrQhjls0zUkgALIa6fOb+Mwq2ZFG7NxJx7UceGihZlYdaevNKiTAjR1FU7AV67dm1txNFk6TQqWwkEaukCIYSoHsWiUJqWS2FiBsXJ2WCx9uZVO2kxRHpbR3rbeqB2lJ8vQghRQX4i2pn+oj7AqKXuTghRNeaCMoq2ZVGwJQPzuRLbdn2wG849/XGK9Ealk58pQghxOVVKgDt37lzlXo/bt2+/oYCaGpVKhU4lJRBCiGtTFIWy9HwKEjMo3nsWzNbRXpWDBqcuvrhE+6Pzc7ZzlEIIUf9VKQEeOXJkLYfRtOlU1l9iikpGa4QQl7IUGSnckUVhYgamrAsT2nQtXXCJ9sfQ0Uf68wohRDVUKQGeNWtWbcfRpGmpSIDlF5gQwkpRFMqOn6cwMZOiXWfAZP2kSKVX49TJF+cefuhbuto5SiGEaJikBrgeqCiBUKQEQogmz1JqomjHGQoTMyotUqHzc7LW9nbylQltQghxg6r9U9RsNrNgwQK+/fZbjh07RllZWaX7s7Ozayy4puLCCLCUQAjRVJWdKqAwMYOiHWcuLFShVeMU5Y1ztL91gYoqzsUQQghxddVOgOfMmcMnn3zCU089xQsvvMC//vUvjhw5wrJly3jxxRdrI8ZGT1teA2yREgghmhRLmZni3WcoTMyk7Ph523atjwHnaH+cu/iidpIl0oUQoqZVOwH+4osv+Pjjj7n11luZPXs2Y8eOpU2bNkRFRZGQkMDjjz9eG3E2atryPsAWGQEWokkwni6kMDGTwu2nUUrKR3s1KgwRXjhH++PQ2l1Ge4UQohZVO+PKzMzkpptuAsDFxYW8vDwAbrvtNn755ZcaDc5sNjNz5kxCQkIwGAy0adOGf//73yiKYttHURRefPFF/P39MRgMDBo0iIMHD9ZoHLVNU54ASwmEEI2XYrJQtDOLrA93cXrBdgo2nUIpMaPxdMRtaCv8n+uB173hOLbxkORXCCFqWbVHgFu2bElGRgZBQUG0adOGFStW0KVLF7Zu3YqDg0ONBvf666/z/vvvs3TpUiIiIkhKSuLBBx/E3d3dNtI8b9483n77bZYuXUpISAgzZ85kyJAhJCcn4+joWKPx1JaKBNgsCbAQjY7pbDEFWzIp2paJpdBk3agGx3AvXKL9cWjrIcsSCyFEHat2AnznnXeyevVqoqOjeeyxxxg3bhxxcXEcO3aMf/7znzUa3KZNm7jjjju49dZbAWjVqhVfffUVW7ZsAayjv2+++SYvvPACd9xxBwCffvopzZs3Z9myZYwZM6ZG46ktFQmwpfoD8kKIekgxWyhOzqYwMYPSQ7m27Rp3Pc7d/XDu7ofGvWYHDIQQQlRdlRPgd955h3HjxvHaa6/Ztt1zzz0EBQWxefNmQkNDGTFiRI0G17t3bz766CNSU1Np164du3bt4s8//+Q///kPAOnp6WRmZjJo0CDbY9zd3YmOjmbz5s1XTIBLS0spLS213c7PzwfAaDRiNBpr9DlcTsU5Kv7VlC+FbLRQJ+cXNe+v11Q0DtW9rubcUoqTsijeloWloPwxKtCHeuDUvTn6UA9UGhUWwCL/V+xC3quNk1zXxudy17Qmr69Kubig9irc3d0xGo3ceeedTJo0iZtvvrnGgrgSi8XC888/z7x589BoNJjNZl5++WWee+45wDpC3KdPH06dOoW/v7/tcaNHj0alUvHNN99c9rizZ89mzpw5l2z/8ssvcXJyqp0ncxWJP/+GV/4J8jvE0qVTaJ2fXwhxAxRwz9XhnemAe64OFdZyBqPOwlnfUs76llLmaLFzkEII0fAVFRVx7733kpeXh5ub2w0dq8ojwJmZmXz33XcsXryYwYMHExQUxMSJE5kwYQKBgYE3FMSVfPvtt3zxxRd8+eWXREREsHPnTp588kkCAgIYP378dR/3ueeeY9q0abbb+fn5BAYGcsstt9zwC1oVRqORlStXMnjwYHQ6Hbv/WAWAf2AQw4cPr/Xzi5r312sqGoerXVdzfhnF28pHe/Mu9EPXt3bD0L05Du2b0VIrZU31jbxXGye5ro3P5a5pxSf2NaHKCbDBYOCBBx7ggQce4PDhwyxZsoS4uDjmzJnDoEGDmDRpEiNHjqzR/3jTp0/n2WeftZUy3HTTTRw9epRXX32V8ePH4+fnB8Dp06crjQCfPn2aTp06XfG4Dg4Ol52wp9Pp6vSNU3E+ta0LhEbeuA1cXf8fEnWj4roqFoXStFwKEzIo3n+O8rcuaictTt2a49zDH523wb7BiiqR92rjJNe18bn4mtbktb2u4YnWrVszd+5c0tPT+e233/Dy8mLChAm0aNGixgID61C3Wl05RI1Gg8Vi/a0TEhKCn58fq1evtt2fn59PYmIivXr1qtFYapO6vAbYJJPghKiXLIVGzq8/Tub8JM7G7aV4nzX51bdyw/OeMPyfi8ZjeGtJfoUQooG4oQXlVSoVWq0WlUqFoig1Xnw+YsQIXn75ZYKCgoiIiGDHjh385z//YeLEibbzP/nkk7z00kuEhoba2qAFBAQwcuTIGo2lNtkSYEVaIQlRn5QdzSck1ZkzW7aD2TpdQuWowblLc5yj/dA1d7ZzhEIIIa7HdSXAx48fZ/HixSxZsoRjx47Rv39/Pv74Y0aNGlWjwS1cuJCZM2fy97//naysLAICAnj44YcrLbk8Y8YMCgsLmTJlCrm5ufTt25fff/+9wfQABlAp1pWgZARYiPqh9Fg++SuOUnooF08cAAVdSxdcov0xdPRBrZdly4UQoiGrcgJcVlbGDz/8wKJFi1izZg3+/v6MHz+eiRMn0rp161oJztXVlTfffJM333zzivuoVCrmzp3L3LlzayWGuqCqaIMmI8BC2JUxs5C8FUcpST5n3aBRccarmLBR3XEK9rBrbEIIIWpOlRNgPz8/ioqKuO2221i+fDlDhgy5pD5XXB+VRUaAhbAn07li8lcdo2hnFiiACpy6NMcpNoBtm1YTGSClDkII0ZhUOQF+4YUXuP/++/Hx8anNeJok2wiwRUaAhahL5vxS8tccp3BLJlisNb6Gm7xxGxyMztdJmuoLIUQjVeUE+OK+uaKGlY8AG5EEWIi6YC40cn79CQo2nQKT9Q9Qh3bNcL8lGH1LVztHJ4QQorbdUBcIUTNUFjMKYLRICYQQtclSaqLgz1Ocjz+BUmr9w1Mf7Ib7kFY4tHa3c3RCCCHqiiTA9UHFCLBMghOiVihGCwWJGZxfexxLobWsQefvjNuQVjiGNUOlkveeEEI0JZIA1wflCXCZ1AALUaMUs0LR9tPkrzqGOa8UAK23AbfBwRhu8kallvecEEI0RdedAJeVlZGenk6bNm3QaiWPvhFKRQKs2DkQIRoJxaJQvOcs+SuPYjpbDIDGXY/bwGCcuvqi0ki5kRBCNGXVzlyLiop47LHHWLp0KQCpqam0bt2axx57jBYtWvDss8/WeJCNmaIoUL60c6mMAAtxQxRFoSQlh/w/jmDMKARA7azFdUAQLtH+qHSS+AohhKD6jWefe+45du3axbp16yqttjZo0CC++eabGg2uKbCYTbbvy6QGWIjrVpqex5kPd3NuyT6MGYWoHDS4DQ7Gb0Z3XPu2kORXCCGETbVHgJctW8Y333xDz549K00ciYiIIC0trUaDawosJrPt+1KLHQMRooEqO1lA3h9HKE3NsW7QqnHpHYBrTEs0zjr7BieEEKJeqnYCfObMGXx9fS/ZXlhYKDOpr4P5ohHgUrO8fkJUlTGriPyVRynec9a6Qa3CuXtz3AYGoXFzsG9wQggh6rVqJ8DdunXjl19+4bHHHgOwJb2ffPIJvXr1qtnomgCL6aISCKkBFuKaTDkl5K8+RtG20xeWLe7ki9ugILReBnuHJ4QQogGodgL8yiuvMGzYMJKTkzGZTLz11lskJyezadMm1q9fXxsxNmoVI8Bm1JSZpQ2EEFdiPl/G+bXHKUjMgPL3imMHL9xvCUbn52zn6IQQQjQk1Z4V0rdvX3bu3InJZOKmm25ixYoV+Pr6snnzZrp27VobMTZqFTXAFpWaMrMUAQvxV5ZiE3l/HCHzja3WpYvNCg5t3PH5e0e8H+ggya8QQohqu64Gvm3atOHjjz+u6ViapIouEBbUlJkkARaigqXMTMGmU5xfdwKlxPo+0QW64j4kGMe2zewcnRBCiIas2gmwRqMhIyPjkolw586dw9fXF7PZfIVHisuxmC+MABtlBFgIFJOFwq2Z5K85huW8ddlibXMn3G8JxrGDl0y2FUIIccOqnQAryuXrVEtLS9Hr9TccUFNjLp8EZ1HJCLBo2hSLQtGOLPJXHcWcY122WOPpiNugIJw6+cqyxUIIIWpMlRPgt99+G7B2ffjkk09wcXGx3Wc2m4mPj6d9+/Y1H2EjV9EFwowak0XBYlFQyy960YQoikLJvnPkrTiKKasIALWrHreBgTh380OllQUshBBC1KwqJ8ALFiwArL+sPvjgAzQaje0+vV5Pq1at+OCDD2o+wkbOfFEJBECZ2YKjWnO1hwjRKCiKQumhXPL+OILxRAEAKoMWt9iWOPcKQK2X94EQQojaUeUEOD09HYABAwbwww8/0KyZTEKpCbZJcOUJsNFswVEnv/hF41Z6NJ/8P45QejgPAJVejUvfFrj2b4na8brm5gohhBBVVu3fNGvXrq2NOJosWw1weUc6qQMWjZkxs5C8P45Qsj/bukGjwqWnP64DAtG4yBwCIYQQdeO6hlpOnDjBTz/9xLFjxygrK6t033/+858aCaypsI0Al5c9GGUxDNEImc4Wk7fqKMW7zlxYva1rc+vqbR6O9g5PCCFEE1PtBHj16tXcfvvttG7dmgMHDhAZGcmRI0dQFIUuXbrURoyNWsVCGKhkBFg0PhWLWBRuyQSL9Y87Q5Q3boOD0fk42Tk6IYQQTVW1E+DnnnuOp59+mjlz5uDq6sp///tffH19ue+++xg6dGhtxNioVYwAK+UjwGXSR1k0EiUHc8j5PhVznvVTIsewZrjd0gp9C5drPFIIIYSoXdVOgPfv389XX31lfbBWS3FxMS4uLsydO5c77riDRx99tMaDbMxsC4dUJMAmKYEQDZulzEzer+kUJmQAoPVyxOOuUBzbePx/e38eJ1dZ5v//r1P7XtX7knQ6+x5CNiCggBASQHGBQUR0kHH0Mw74UXHmM+JvRHHmK6POKKODOm6Io8giiMoeI4EBAySB7Eln7Sy9b7Xvdc7vj1q6q7u60510d/VyPR+PenTVqdOn7s5Jd7/7rutcd3EHJoQQQmSMOADb7fZc3W9NTQ3Hjh1j2bJlAHR2do7u6KaBbB9g+rRBE2Kyip300/N4A8muKAD29TW4r5sjLc2EEEJMKCMOwJdccgmvvfYaS5Ys4frrr+eLX/wie/fu5amnnuKSSy4ZizFOadkuEJo+fSpkOWQxGWkJFd+fThJ89QxooHebKPmrhVgWSLtEIYQQE8+IA/B3vvMdgsF00/r77ruPYDDIY489xoIFC6QDxDlQMyUQik4ughOTU7wpSPfjDSTb0qu42VZX4rlhHjqr9PMVQggxMY34N9TcuXNz9+12u6z+dp6yF8HlaoBlBlhMElpKI7D1NP4tp0DV0DmMlHxoAdZlZcUemhBCCDEk3Ug/Ye7cuXR1dQ3Y7vV688KxGJ5sDbCSuwhOArCY+BLtYdp/uAv/5pOgaliXl1H1+dUSfoUQQkwKI54Bbmxs7O1c0EcsFqOpqWlUBjWdZGuAFX12IQwJwGLi0lSN4OvN+F5shKSKYjFQ8oF5WC+sQFGUYg9PCCGEGJZhB+A//OEPufsvvvgibrc79ziVSrFlyxZmz549qoObDnI1wJmL4GQGWExUye4o3U80ED/hB8C8sITSmxagd5uLPDIhhBBiZIYdgD/4wQ8CoCgKt99+e95zRqOR2bNn8x//8R+jOrjpIFsDrJMZYDFBaZpGaHsrvmdOoMVTKCYd7vfOxX5Rtcz6CiGEmJSGHYBVNR3M5syZw/bt2ykvLx+zQU0n2XISnd4AmswAi4kl5Y/R8+QRog09AJhmuyi9eSGGMmuRRyaEEEKcuxHXAJ84cWIsxjFtqckEkKkBTkI8JSvBieLTNI3I7g56fn8MLZIEg4J742wc75qBopNZXyGEEJPbsLtAbNu2jWeeeSZv2y9/+UvmzJlDZWUln/70p4nFYqM+wCknFkDZ9SvmdLwEQCrZZwYYmQEWxZcKJeh+5BDdjzagRZIYZzio+uwqnJfPlPArhBBiShh2AP7617/O/v37c4/37t3LJz/5STZs2MCXvvQl/vjHP3L//fePySCnlHgIw7OfZ8WZX4Om9tYAGyQAi+KLHOii7bs7ieztBJ2Ca8MsKv9+JcYqe7GHJoQQQoyaYZdA7Nq1i3/5l3/JPX700Ue5+OKL+clPfgJAXV0dX/3qV/na17426oOcUiweABQ0iAVyXSAMshSyKCI1msT7x+OEd7YBYKi0UfrhhZhmOos8MiGEEGL0DTsA9/T0UFVVlXv8yiuvcN111+Uer1u3jtOnT4/u6KYiowXNYEVJRiDqzS2EoTPISnCiOKJHvfT89jApbwwUcLx7Ju5r6lGMI14nRwghhJgUhv0brqqqKncBXDwe5+233+aSSy7JPR8IBDAajaM/wqnIkumhHPHmFsLQSwmEGGdqPIX3D8fo/OleUt4Y+lILFf/nAjzXz5HwK4QQYkob9gzw9ddfz5e+9CW++c1v8vTTT2Oz2Xj3u9+de37Pnj3MmzdvTAY55Vg9EGxFifpyJRC5ACwzwGIcxE766XniMMnOCAD2i6txXz8XnVlf5JEJIYQQY2/YAfhf/uVfuPHGG7niiitwOBw8/PDDmEym3PM///nP2bhx45gMcqrRLB4UgKiXVOYiOEMmACdkBliMIS2p4v/TSQKvnAEN9C4TJX+1EMvCkmIPTQghhBg3ww7A5eXlvPrqq/h8PhwOB3p9/kzRE088gcPhGPUBTknZEoiot/ciOJkBFmMs3hyk5/HDJFpDANhWVeK5YS46m5QuCSGEmF5GXOjndrsHhF+A0tLSvBnh0dLU1MTHPvYxysrKsFqtrFixgh07duSe1zSNe++9l5qaGqxWKxs2bODIkSOjPo5Rle0EEfXmFsIwGKULhBgbWkrD/+dTtD+4i0RrCJ3dSNnHllB6yyIJv0IIIaalCX2lS09PD5dddhlGo5Hnn3+eAwcO8B//8R+UlPS+Xfutb32L733ve/zoRz/izTffxG63s2nTJqLRaBFHPjQtE4CJ+nILYRgyFxDKRXBiNCU6wrT/aDf+l05CSsOytIyqL6zGulyWMhdCCDF9jXgp5PH0zW9+k7q6Oh566KHctjlz5uTua5rGAw88wD//8z/zgQ98AEivTldVVcXTTz/NRz7ykXEf87DkukD0oKbSs+bGXAmELIUszp+magT/0ozvhUZIqigWPZ73z8O2qhJFkdXchBBCTG8TOgD/4Q9/YNOmTdx888288sorzJgxg7//+7/nU5/6FAAnTpygtbWVDRs25D7H7XZz8cUXs23btkEDcCwWy1u22e/3A5BIJEgkEmP4FaVpJid6QAv3kEqWAaDT6wGVWCI5LmMQoyt7zibCuUt5Y/ieOkbiRPr/tWmeG9eH5qJ3m0lm2u6J4ZlI51WMDjmnU5Oc16mn0DkdzfM7oQPw8ePH+eEPf8jdd9/Nl7/8ZbZv387//b//F5PJxO23305raytA3gId2cfZ5wq5//77ue+++wZsf+mll7DZbKP7RRQws/sMa4Du5uN4e9JVKOkey/W0d3bz3HPPjfkYxNjYvHlz8V5cg7J2E3Un7ehTCimdxpn6MJ0V3fD6ieKNawoo6nkVY0LO6dQk53Xq6XtOw+HwqB13QgdgVVVZu3Yt3/jGNwBYtWoV+/bt40c/+hG33377OR/3nnvu4e6778499vv91NXVsXHjRlwu13mP+2xShxQ4+d+U2fTYbVbiXli2bAn8bxi70831119y1mOIiSWRSLB582auueaaoiwIkwrE8T99nPhxLwDGWU7KbpxHbZll3McylRT7vIrRJ+d0apLzOvUUOqfZd+xHw4QOwDU1NSxdujRv25IlS3jyyScBqK6uBqCtrY2amprcPm1tbVx44YWDHtdsNmM2mwdsNxqN4/KNozgyZQ8xP1qm64PFYgHCJFKafPNOYuP1f6iv8O4OvL8/ihpOgl7BvXE2jnfPQNFJre9oKcZ5FWNLzunUJOd16ul7Tkfz3E7oLhCXXXYZDQ0NedsOHz5MfX09kL4grrq6mi1btuSe9/v9vPnmm6xfv35cxzoSvV0gehfCMGVOqrRBE8OVCiXoeuQg3b85hBpOYqy1U/XZVTivmCnhVwghhBjChJ4B/sIXvsCll17KN77xDT784Q/z1ltv8eMf/5gf//jHACiKwuc//3n+9V//lQULFjBnzhy+8pWvUFtbywc/+MHiDn4ouYUwfKiZNmgWczoAh+OpYo1KTCKRQ930PHkYNZAAHTjfMwvXe+pQDBP6b1ohhBBiQpjQAXjdunX87ne/45577uHrX/86c+bM4YEHHuC2227L7fP//t//IxQK8elPfxqv18u73vUuXnjhhUxJwQSVXQgDjVQyDkCpywpAZzCGqmroZAZPFKBGk3ifOU54RxsAhgorpR9ehKnOWeSRCSGEEJPHhA7AAO973/t43/veN+jziqLw9a9/na9//evjOKrzZDCTVEwYtDhqpi1VudOGToGkqtEZilHpnMABXhRF9JiXnicOk/LGQAHHZTNwb6pHMQ5cmVEIIYQQg5vwAXiqShjsGBJx1FS65MFkMlLuMNMeiNHmkwAsemlJFd/zJwi+3gyAvsRM6c0LMc/1FHdgQgghxCQlAbhIEnob1kRPLgDrDHqqXBbaAzFa/VFW4C7yCMVEkAol6PrVQeInfADYL6rG/d456MzyrSuEEEKcK/ktWiRxvQNNS/c6BtDrDVS5LOxt8tHqjxZ5dGIiSLSF6Hz4AKnuKIpZT+kti7AuLSv2sIQQQohJTwJwkSQMNlR6L3TT6Q1Uu9O9idt8EoCnu8ihbrp/cwgtlkJfaqH89qUYq+zFHpYQQggxJUgALpKE3o6q9QZgvcFAtStd99smM8DTlqZpBP+3Cd/zJ0AD0xw3ZR9bgt4ujd2FEEKI0SIBuEgSejupPgE4WwMMSAnENKUlVXp+d5TwznSLM/tF1XjeP096+wohhBCjTAJwkcT1dlStN9ikSyBkBni6SgXjdP3PQeIn/aCA+31zcVxai6JIP2ghhBBitEkALpKEwZYrgVB0OhRFyZVAtEoN8LQSbwnR9fB+Ut4YikVP2UeXYFlYUuxhCSGEEFOWBOAi6VsCoTek6zsrMwHYH00SiaewmmSBg6kusr+L7scOocVVDGUWym5fhrHSVuxhCSGEEFOaBOAiSejtuS4QOn066LosBqxGPZFEilZ/lDnlctX/VKVpGoGtZ/C/1AgamOd7KPvoYnQ2udhNCCGEGGtydU2R9K0B1hnSf4coiiJ1wNOAllDpeawB/4uNoIF9fQ3ldyyT8CuEEEKME5kBLpKEoU8JhL631KHKZeZEZ0gC8BSV8sfp+p8DxE8HQAee98/DcUltsYclhBBCTCsSgIukbx9gXZ8ALBfCTV3xpiBdv9xPyhdHsRoou20JlvmeYg9LCCGEmHYkABdJvO9FcPreSpQqt/QCnorCezvpebwBLaFiqLBSfvsyDOXWYg9LCCGEmJYkABeJpjOQ0qcDkE7X2+tVVoObWjRNI7DlFP4/nQLAvLCEslsXo7PKt54QQghRLPJbuIhUowOAPvlXSiCmEDWeoue3h4ns6QTAcVkt7uvnouhlcQshhBCimCQAF1FvANZy2ypzM8CxooxJjI6UL0bnLw+QaAqCXqHkA/OxX1Rd7GEJIYQQAgnARZUypPv86vsE4GwbtPZAFFXV8sojxOQQPx2g85cHUANxdDYDZR9binmuu9jDEkIIIUSGBOAiSgfgWP4MsNOMokAipdEdjlPuMBdvgGLEons68f3uOCRVDFW29MVupZZiD0sIIYQQfchCGEWkGtJL3upJ5bYZ9TrK7OnQK3XAk4ematSesuJ74igkVSyLS6n8zEoJv0IIIcQEJAG4iFKGTBeIPgEYoNqdDsDSCWJy0FIq/t8epaYpfT4dV8yk7K+XorPIGyxCCCHERCQBuIhUXSYAa8m87blOEBKAJzwtodL1q4NE93ahKhquG+fhuW4OitRuCyGEmOJafBGavZFiD+OcyBRVEWX7AOu1RN72qmwnCCmBmNDUWIquX+4ndswHBoVj8wO8a1VFsYclhBBCjLqUqnG4LcCOkz3saOxmR2MPTd4Id1w2m6/esKzYwxsxCcBFpOrTpQ66wQKwtEKbsNRwgs5f7Cd+KoBi0uP52EL8B18v9rCEEEKIURFNpNh12svOkz1sb+xm58keAtH8d6x1CvjCiUGOMLFJAC4iVZcJwGo8b7uUQExsqWCczp/tI9ESQrEaqPib5SjVFjhY7JEJIYQQ56YrGGPHyZ5c4N3X5COR0vL2sZn0rJ5Vwpr6EtbNLuXCWR4c5skZJSfnqKeIlM4EDAzAVW5ZDnmiSvpidP50L8mOCDqHkYq/XYGx2k4iMTn/AhZCCDH9aJpGY1eY7Y3d6XKGkz0c7wgN2K/SaWbd7FLWzi5hbX0pS2qcGPRT4/IxCcBFlMIIgF7NL3WQGeCJKdkVoeMne0l5Y+jdZsr/djnGCluxhyWEEEIMKZFS2d/sZ0djd66coTMYH7DfgkoHa2eXsm52eoZ3ZokVRZmaF3VLAC4iVZcOwDo1BqoKuvRfVdkA7A0niCZSWIz6oo1RpCXaQnT8dB9qII6hzEL5p1Zg8EiPXyGEEBOPP5rgnVPeXODdddpLNKHm7WPS67hgpjsXeNfUl+CxmYo04vEnAbiIVCUzA6yoEPOBtQQAl9WAxagjmlBp80epL7MXc5jTXvxMgM6f70MNJzFW2yj/5Ar0zunzQ0IIIcTE1uyN5GZ2tzf2cKjVj5ZfvovHZmRtfQlr6tOBd/kM97SeYJMAXESqmv7fqVM0iHhzAVhRFKpdFhq7wrT6JAAXU+yEj85f7EeLpTDWOam4Yxk6m7HYwxJCCDFN5dqRZWp3s+3I+ptVasvV7q6bXcK8Cgc66VGfIwG4iFLJdDsRHRpEvXnPVWUCcFtAWqEVS/RwD13/cwAtoWKa46b8E0vRTdKrXYUQQkxO2XZk2cBbqB2ZXqewtMaVC7xrZ5fkWqqKwuS3eRGpqfR/YL2iQaQn7zlZDKO4Ivs66frNIUhpWBaVUPaxJSjT+K0iIYQQ4yPbjixdv9vD/ubB25GtzVysdmGdB7tM0IyI/GsVkZpKAaBT1HQJRB/VbukEUSyht9vo+e1hUMG6opzSWxahGKZG2xchhBATh6ZpnOgM5a2udrxz6HZk62aXsrh66rQjKxYJwEXUG4ALl0CABODxFtzWjPf3xwCwrami5KYFKFIzJYQQYhTEkyr7m325xSZ2NPbQFRrYjmxhlSN3sdpUb0dWLBKAi0hN9i2B8OY9Vy0lEOPOv/U0/hcaAXBcWov7fXMl/AohhDhn/miCt/usrjZYO7KVdel2ZOkuDdOrHVmxSAAuolRq8Ivgqt3pZZJlBnjsaZqG/6WTBF4+DYDzPXW4NtbLX9tCCCFGZCTtyLKBd7q3IysWCcBFpCYHrwHOlkC0+2NomiZhbIxoqobvmeME/9IMgPu62TivqCvyqIQQQkx0fduRbW9Mz/IO1Y5sXSbwSjuyiUECcBHldYHoNwNc6UwH4HhKpSecoNQub4eMNk3V6HnyCOGdbQB4PjgPxyW1RR6VEEKIiSgST7H7jDcXeN8+NXQ7smzgrZR2ZBOSBOAiyrsIrt8MsMmgo8xuoisUp9UXlQA8yrSkSvdjDUT2doIOSv5qIfbVVcUelhBCiAliOO3I7CY9q6Qd2aQkZ6mIcjXABWaAIV0G0RWK0+aPsrTWNc6jG12pVIp4PE4sFhvwse/9ZDKJ0WjEaDRiMpnO+tFgMKDTjawVjJZI0fWrg0QbekCvUHbrYqzLy8foKxdCCDHRjagd2Zz0zK60I5vcJAAXUW8XiIE1wJDuBXygxT9hLoSLxWK0tLTg9/uHFWb7fkwmk2d/gXM0ksBsNphQ3/Fi7EhhNZqp+dBSdAucUmcthBDTSLYd2Y7GHnacHLodWfZiNWlHNrVIAC6ioUogoE8v4CK0QtM0ja6uLs6cOZO7tbW1ofW/nHWE9Hp9OoiazZjN5tz97EeDwUAymSQej5NIJAb9mEgkcsfMPg6Hw8MfSLai5A9vwR/AYDBgs9mw2+3Y7faC9/tuM5lM8kNQCCEmiWw7smzgLdiOzKBj5cx0O7J1s0tYPUvakU1lkyoA/9u//Rv33HMPn/vc53jggQcAiEajfPGLX+TRRx8lFouxadMmfvCDH1BVNfHrOXMBGA1iPlBToOtthZLrBTwOM8DRaJSmpibOnDnD6dOnaWpqIhIZeDWry+WitLR00AA7VLjNliyMBlVVhxWUsx9joSi+t5uJRiJE9UkS5XoiiSihUIhkMkkymcTv9+P3+4f1+nq9Pi8gW61W2traeOONN/B4PDidTlwuF06nE6PROCpfsxBCiOHJtiPb0Zjuv9vQFhiyHdm62el2ZGaDtCObLiZNAN6+fTv//d//zQUXXJC3/Qtf+ALPPvssTzzxBG63m7vuuosbb7yR119/vUgjHb5U34UwAKI+sJXmns/2Ah6rAByJRHjjjTc4cOAAHR0dA57X6/XU1tYyc+ZM6urqmDFjBm63e0zGMlI6nQ6TyYTJdPa/ztVYko6f7iPht6BzGqn42xUYq+y55+PxOKFQiFAoRDgcPuv9ZDJJKpUqGJi3bNky4PUtFgtOpzMvFPe9uVwu7HY7er384BVCiJFKqRoHWwL8b6vC5sf38PYpL80F3jmtL7OxJlPKsG52CXPLpR3ZdDYpAnAwGOS2227jJz/5Cf/6r/+a2+7z+fjZz37GI488wlVXXQXAQw89xJIlS3jjjTe45JJLijXkYcnWAOuM6aBL1JsXgHuXQ46N6utmg+8bb7xBLNZ7bI/Hkwu7M2fOpKqqatRmbItFS6h0/fIAidMBdDbDgPAL5IJ0SUnJsI6ZDcx9Q3EgEGDfvn1UVFQQDAYJBAL4/X6SySTRaJRoNFrwj4wsRVGw2+1DBmW3243FYpHSCyHEtBaKJdl12ttbznDKSyCWBPRAK5BuR7as1pULvNKOTPQ3KdLNnXfeyXvf+142bNiQF4B37txJIpFgw4YNuW2LFy9m1qxZbNu2bdAAnL1YKys7i9e/tnSsZF8j1wXCbAcNkoFONGfvIgzltvTpafVFRmVcsViM7du38+abbxKNpv86rqysZP369cyePRuHw5G3v6Zp4/LvMVa0lIbvscPEjvlQTDo8H18Mpabz/poURcHhcOT9eyUSCXp6erjmmmtyJQ+aphGLxQgEArlQnL31fRwMBtE0jWAwSDAYpKWlZdDXNplMuFwuXC4Xbrd7wEen0ykzyaMo+39lMn8fiHxyTiefFl+Ut0952XnKy9unejjUGiSl5tcz2Ex66qwJrrlwLuvmlLFypntAOzI555NLoe/V0TyHEz4AP/roo7z99tts3759wHOtra2YTCY8Hk/e9qqqKlpbWwc95v3338999903YPtLL72EzWY77zEPVyRz0VYkpQMdvPXqZjpcveEnlAAw0BNO8IdnnsNwjp1WUqkUHR0dtLe3k8rUHVssFqqrq/F4PJw6dYpTp06d51czwWhQf8xOeYcZVdE4Mt9LcM+rsGdsX3bz5s3D2s9ms2Gz2aiqqkLTNJLJZO4PsP63bB1ztpVcZ2cnnZ2dgx67b1eM7K3vY71eL7PIIzTc8yomDzmnE5OqQXMYjvsVTgTSt574wJ9XHpPGXKfGHKfGXJdGjS2JXgHiR/E2HOWVhvEfuxgbfb9XR3Sx+1lM6AB8+vRpPve5z7F582YsltF76+Kee+7h7rvvzj32+/3U1dWxceNGXK6x77ebSCTYvHkzRr2eFOAor4TuY1x0wUK0pdfn9tM0ja/t2kI8qbLqsiupKxlZOI/H4+zcuZM33ngj95+mrKyMd7/73SxZsmTE/XMnC03TCD5/knBHa3qRi48s4vIlpWf/xPOQPad9Z4DH4jWydcc+ny/vY/Z+KpU6a1cMg8GQmzUuNJPscrkmfenLaBmP8yrGl5zTiSUYS7LrtI+3T/Ww85SX3ad9hOKpvH10CiypcbJ6VglrZnlYPctDjTs/E8h5nXoKndPhXqg+HBP6t9zOnTtpb29n9erVuW2pVIpXX32V//qv/+LFF18kHo/j9XrzZoHb2tqorq4e9LjZLgX9ZWfOxouqpr/JDdb0hWWGRAD6vX61y8Kp7jBd4RRzK4c3tng8zo4dO3j99dcJhdKNvEtLS7nyyitZvnz5lA2+Wf4tpwhvS78DUHLTQuwXjF9HkLH8P2Q0GrHZbIP+39Y0jVAohM/nywvIfW/BYJBkMklXVxddXV2Dvpbdbsftdg96s9vt02oWebx/NoixJ+e0OJq8EXY0drMz05LsUKufftUMOMwGVs3ysLa+lLWzS0a0upqc16mn7zkdzXM7oQPw1Vdfzd69e/O23XHHHSxevJh/+qd/oq6uDqPRyJYtW7jpppsAaGho4NSpU6xfv74YQx6R3EIYVk96Q6HFMDIBeLi9gE+cOMGTTz5JMBgEoKSkhCuuuIIVK1ZMi9rQ4LZm/JtPAuB+31zsayZ+O7zR0rc2ecaMGQX3ybZ76x+M+94SiUTu4r7m5uaCx9Hr9UMGZLfbLb+EhJjmkimVgy2B9EITJ3t4+2QPLQV+l83wWFk7u4S19SWsqS9lUbUTvXRnEGNsQgdgp9PJ8uXL87bZ7XbKyspy2z/5yU9y9913U1paisvl4rOf/Szr16+f8B0goE8fYFumtVih5ZDdw+8F7PP5ePzxx4lEIng8Hi6//HJWrlw5LYIvQPiddry/PwaA8+pZON9VOAROZwaDgdLSUkpLC5eEaJpGJBIZMiAHAgFSqRTd3d10d3cP+lo2my0vEHs8nryb1Wodqy9TCFEE/miCd0552dmYDry7TnsJ9ytn6NudYW19KWvqS6h2S3cGMf4mdAAeju9+97vodDpuuummvIUwJjpN03IBWJ8pgSDSM2C/atfwegGnUimefPJJIpEINTU1/M3f/M20moGLHOyi+4n0VQ/29TW4Nswq8ogmJ0VRchfo1dTUFNwnmUwSCASGDMnxeJxwOEw4HB60q4XZbM4LxP1DstUqS44KMVFpmsaZnki6lCGzlHChxSacFgOrZ2VmdzPlDDbTpI8eYgqYdP8Lt27dmvfYYrHw4IMP8uCDDxZnQOeqz08Jnd2TvjPUcshn6QW8detWTp06hdls5uabb55W4Td23EfXrw+BCrYLK/DcME+C0xgyGAyUlJQM2jdZ0zSi0WheIPZ6vbmPXq+XUChELBajra2Ntra2gsfJdngZLCDbbDY5z0KMk0RK5UCznx0ne9h5Ml3D21bg99KsUlsu7K6pL2FhpVMWmxAT0qQLwFOFpva+LaSzZYJEgRKIGZ7028SHWwODHuvo0aP87//+LwA33HDDoG9vT0XxpiCdD++HpIplcSklNy9EkR+2RaUoClarFavVOugFe/F4PC8QZ2/ZbcFgkHg8Tnt7O+3t7QWPYTQahwzI0+1CPSFGky+SSHdmyCw2sfu0j0giv5zBoFNYNsOdXk64Ph14ZbEJMVlIAC4STVVz9/X2TGAtMAN8ydwy9DqFhrYAp7vD1JXmt0ILBAI89dRTAKxdu3ZAzfRUlugI0/nzfWixFKY5LspuW4yin9odLqYKk8lERUUFFRUVBZ9PJBJDBuRAIEAikaCjo2PQFfYMBsOAuuO+IdnhcEhAFoL0uzanusOZldXSF6sdbh9YzuCyGNK1u7PTtbsrZ3qwmqbHNSZi6pEAXCx9ArAuG4ALzACX2E2sm13CG8e7eelAG59815w+h1B58sknCYfDVFVVsWnTprEe9YSR9Mbo/Ok+1FAC4wwH5bcvQzHKD+Kpwmg0Ul5eTnl5ecHnsz2R+wfkbEjOLkM91KIh2X7Ig4Xk/isjCjFVxJMq+5t9uVZkO0720BkcWM4wu8zGmkwrsrX1JcyrcEg5g5gyJAAXSXYGWNHpULIlEBFfwX2vWVrNG8e72XygNS8Av/rqqzQ2NmI0GqdV3W8qGKfzZ3tJ+WIYKqyU37EMnUX+K08nRqORsrIyysrKCj6fbfd2toA8VD/kbKu3RCLBs88+S2lpaV5QdjgcU76ntpgavOE4b5/qDbu7T3uJJdW8fYx6heWZcoY1me4MFc6B/fKFmCokNRSJpqV/+Oj1BrB40htjPlBToMufydy4tIp/eeYAb53opicUp8Ru4sSJE7zyyisAvO997xt0pmyqUaNJOh/aT7Ijgt5tpvyTy9E7TMUelphgztbuLZVKDRqQvV4vfr8/1+oNYNeuXQOOkQ3I/WeQJSCLYtI0jcaucG6xiZ0nezjSHhywX4nNyJr6ElZn2pFdMNONRd5FE9OIBOAi0VLpAKwzGCC7EAZA1Ae2/F/adaU2Flc7OdQa4M+H2tm0yMOTTz6JpmmsWrWKlStXjuPIi0dLpOh8+ACJpiA6u4Hyv12OwSMXXIiR0+v1Q3aySKVSBAIBOjs7efXVV6mvrycQCOTNIp+tF7IEZDEeYskU+5r87My0Inv7VA+dwfiA/eaW2zP1u+kZ3nkVcpGomN4kABeL1icA641gckA8mK4Dtg2ctdq4tIpDrQE2728lfOBlgsEgFRUVXHfddeM88OLQUipdjxwifsKHYtZT/jcrMFbYzv6JQpwDvV6f6yRRVlbG5ZdfnldilA3Ig80gDzcgDxaOs68tAVn01xOKZ3rvptuR7T7jI96vnMGk17FipjvXmWFNfQllDilnEKIvCcBFkq0Bzq3SZvGkA3CBThAAG5dV870/H6Xt6G6O6U5jMBi4+eabMZmm/tv/mqrR89sjRA92g0FH+e1LMc2QC5RE8fQNr4X0Dcg9PT2DllicrQZZAvL0pmkaxztDuVZkO072cLwjNGC/Ursps7JaOuwunyHlDEKcjQTgIskGYJ0+cwqsHvCfKbgaHMCyWhdLnTFWxE8DcP3111NZWTkeQy0qTdPwPXOc8DvtoIOy2xZjnusp9rCEGFLf8Dp79uwBzw+3BlkC8vQSTaTY1+RjR6Y7w9uneugODSxnmFdhTy8jnOnOMKdcyhmEGCkJwEWSC8CGPjPAULAVGkAkEmEdR1AUSHnqWLVq1dgPcgLw/+kUwb80A1B68yKsSwpf9S/EZDKcGuTRCsjZOuT+H51OZ+87UKIouoKx3IVqO072sPeMj3iqXzmDQcfKme50O7LMDG+Jfeq/8yfEWJMAXCxqny4Q0HshXIESCE3TePrpp1ESEXyqmb8EavmaBvop/gd/4LUmAltOAeB5/zxsq6b+jLcQMD4BWVEUXC5XwXDs8XhwuVzTprXieNA0jWMdwVwrsp0nezjRObCcodyRLWcoZXV9CctnuDAb5A8VIUabBOAi0fpeBAdDzgC/8cYbHD58GL1ez3YW0RZS2XW6hzX1U3fJ49DONnzPHAfAdU09jktrizwiISaOkQbk7Ap6fT+qqorP58PnK9x/HMDhcBQMx9n7ZrNcWDWYaCLFnjM+dpzsZmdjDztP9eANJwbst6DSkevMsLa+hPoym5QzCDEOJAAXSW8NcOYv+0FmgNvb29m8eTMA1157LR1HDZzZ3cxLB9qmbACO7O+k58nDADguq8V5VV2RRyTE5HK2gKyqKsFgcNBw7PV6SSQSBINBgsEgTU1NBY9jsVgGDcdutxubbXqEOU3TaPJG2HXay65TXnae6mFfk49EKn8tYYtRx8qZnlw7stWzSvDYpJxBiGKQAFws/UsgBpkB3rdvH6qqMm/ePNauXUubuYU/7G5m8/427rluyfiNd5xEj3rpeuQQqGBbXYn7vXOnxS9QIcaTTqfD5XLhcrkKPq9pGuFweNBw7PV6iUajRKNRWltbaW1tLXgco9E4ZB3yZO2F7Isk2HMmHXZ3n/Gy67Sv4FLCFU5zrm537exSlta4MBkm39crxFQkAbhINDUF9LkIbpAZ4KNHjwKwfPlyFEXhioUVGPUKxztDHG0PMr9y6rQDi58J0PXLA5DSsCwto+SmhSiy7rwQ405RFOx2O3a7ndrawuVHsVhs0HDs8/kIBoMkEgk6Ojro6OgoeAy9Xn/WOuRiX6gXT6ocbPGng+4pL7vOeAu2IjPoFJbUuFhZ52b1rHQNb12pVf6AF2KCkgBcJLk+wNkaYGvmrco+M8DBYJDm5nQHhPnz5wPgtBhZP6+cVw93sPlA25QJwClfjM6HD6DFU5jnuSm7dTHKVL/KT4hJzGw2U1VVRVVVVcHnE4lErg65fzjue6FeT08PPT2F2z8qioLT6Ry0Dtntdo9qL3RN0zjZFU6XMmRuB5r9AzozAMwqtXFhnYeVdR4urPOwrNYlvXeFmEQkABfJgD7A2RKIPjPAx44dA6C6uhqn05nbfs3SKl493MFLB1r5zJXzxmO4Y0qNp+j8nwOogTiGKhtlH1+KYpS3CYWYzIxGI2VlZZSVFW5dmF0spFA4zn7MXszn9/s5ffp0wePYbLYh65CtVuugY+wOxdl92ss7p73sPp0uZyh0oZrHZmTlzHTQzYbeUmlFJsSkJgG4WLR+F8Fllz8OtIKmgaLkyh+ys79Z1yyp4itP72PXaS/tgSiVTsu4DXu0aZpGz5NHSJwJorMZKP/rpegs8t9SiKmu70Ie9fX1A55XVZVQKDRkHXI8HiccDhMOh3PvlvVnNpvTfY9dLpIGG91xPXvP+PjxgWc55oMoBqD33SaTQceyWhcrZ3pYNcvDypke6cwgxBQkSaNIBswAVy4BnQFC7eA7jeqamZsB7h+Aq90WVs50s/uMjy0H27n1olnjOvbRFHj5NJHdHaBTKL1tCYaywWdrhBDTh06nw+l04nQ6mTlz5oDnNU0jGo0OGo67e7zEohFisRhtbW20tbXlPrc+c1tngRQ6MNlwOF1UlZdSX1NBaYkDjyd9czqljleIqUgCcJEMqAE2WqFmJTTthNNv0VKqJxwOYzabqasb2AbsmqVV7D7j46X9rZM2AEf2deJ/6SQAng/MwzLPU9wBCSEmDUVRsFqtWK1W9I4STqW87PF52RVws6fZQyCWxEAKuxLHocSxKzEqTClqrSmMcT8OI8QjIfSoEA8S6QrS2NVMY0P+62Q7ZgxVh2wwyK9SISYb+a4tkt6lkPucgrqLMwH4TY50lQMwd+7cgldBb1xWzb+/dJjXj3URiiWxmyfXqYy3hOh+PP2bxr6+BsfFNUUekRBiMgjFkuxr8rErU7O765SXZl90wH4Wo44VM0ryLlSb4bGSTCZ57rnnuP7661EUBb/fP2gdcnbBkOxzJ0+eLDgmh8MxoPY4G5pdLte06YcsxGQyuVLTVNJ/IQyAuovgjR/A6Tc5ql8EDCx/yFpQ6aC+zMbJrjCvHu7guhWTJ0CmgnG6Ht6PFlcxz/fged/kv5BPCDH6UqrG4bYAu/t0ZTjcFkDNX18CRYGFlU5W1rm5sK6ElXVuFlU5MeiHvpjWYDBQWlpKaWnhRYX6Lhgy2KIhfRcMOXPmzKCv0zcQF/posUzeazmEmIwkABeJ1n8hDICZFwEQbjlCk5JeeWmwAKwoCtcsqeKnr51g84G2SROAtaRK168OkvLGMJRZKPuotDsTQqRrelt80fTMbqYzw74mH+F4asC+1S5L3szuipluHGPwLljfBUNmzRpYapZdMKTQzHF2ZjkUCpFMJunu7qa7u3vQ1zKZTEMGZJfLNaot34SY7iQAF0lvCUSfGWD3DHDXcdxnRdM0KioqcLvdgx5j47JqfvraCbYcaieRUjGeZbaj2DRNo+fpo8Qb/ShmPWW3L0NnMxZ7WEKIIghEE+w548vrudsRGLiamt2k54KZHi7MdGS4sM5DtXtizJb2XTBkxowZBfdJJpO5Vm59g3Hfj5FIhHg8PuSiIZBeevpsIVnqkYUYHvlOKRJN63cRXFbdRRzxBQBYsGDBkMdYU19Cqd1EdyjO9sZuLp1XPiZjHS3B15sJ72gDBUo/uhhjpa3YQxJCjINESuVQS4BdZ7y5coZjHUG0fqUMep3C4mpnbmb3wjoP8yoc6CfxipBnK7MAiMfjQwZkn89HPB7PLT/dt6NFf3a7fciA7HQ6i766nhATgQTgYunfBi27eeZFHN1XuP1Zf3qdwlWLK/ntzjNsPtA2oQNw9HAPvmePA+C+fg7WRYP/MhBCTF6apnG6O8I7p3vYfdrHrtM97G/2E0sOXE1tZok1F3TTq6m5sZqmXzgzmUyUl5dTXj74z/BoNDpkQPb7/SSTSUKhEKFQiJaWloLHURQFh8Mx5Eyy3W5Hp5vY7ygKcb4kABfJgD7AGW22RYRoxUiCWQV6X/a3cWkVv915hpf2t3Hv+5ZOyCuNEx1huh45CBrY1lTheFfhtwqFEJOPNxzP1O2mw+7uMz66Q/EB+7kshryZ3ZV1Hsod5iKMeHKyWCxYLJZBl57WNI1IJHLWkKyqKoFAgEAgMOhr9a197h+Qs/els4WY7CQAF4lWqAsEcLQn/QNlDqcweI9D5eIhj/PuBRVYjDqavBEOtgRYWusamwGfIzWcoOvhA2jRFKZ6FyUfmi8/NIWYpGLJFAea/bkL1Xad9tLYFR6wn1GvsLTGlXeh2uwyO7pJXMow0SmKgs1mw2azUVNT+KLo7Op6QwXkQCCQ1/ptMNnOFkOVW1gsFvl5LyYsCcBFoqnpK5v71wAfOZYuE1hAI5x+86wB2GrS8675FfzpYBubD7RNqACspTS6fnOIZGcEvdtM2ceWoBjkbTUhJgNV1TjRFcoF3d2nvRxo8ZNIaQP2nVNuZ+VMdy7wLq11YTZMv1KGia7v6nqDXbSXSqUIBoNDziSPpLPF2dq/SWcLUSwSgIulwEIY0WiU06dPAzCfRjj9Fqy5/ayH2ri0ij8dbOOlA618bsPQF86NJ9+zx4kd8aIYdZTdvhS9U37QCTFRdQZj7DqVWVwiE3j90eSA/UrtpnTQzXVmcOOxyff2VKHX63Mr3A1mJJ0tOjs76ezsHPRY0tlCFIv8ryoSLXP5c9+rcY8fP46maZS5LJT4/ekZ4GG4ekklOgX2N/tp8kaY4bGOyZhHIvhWC8G/NANQessiTLWOIo9ICJEViafY1+xj1ykvuzKrqTV5IwP2Mxt0LJ/RO7O7qs7DzBKrvK09zY2ks8VQITkWi42os8VgIdnpdI7FlymmOAnARVLoIrijR48CMH/BYtgJdB2BUBfYy4Y8VpnDzJr6ErY39vCnA23cfunssRr2sMSO+/A+ne5k4bqmHuvyidudQoipLqVqHG0P5haX2H3aS0NbgFS/5dQUBeZXOPIuVFtU7Zzw/cXFxDTczhZna/823M4Wdrs9V+OcDcX9b1ar/PEmekkALpJsDXB2IQxN03IBeMGS5XByEXQ2wJntsOjasx7vmqVVbG/s4aUDrUUNwMnuKF2/PgCqhvWCcpxX1RVtLEJMN9m63f3NfvY3+9hz2seeM15CBVZTq3Sa82Z2l89047LIwjRi/GQ7W1RWVhZ8fiSdLYLBIACHDx8e9PX0en0uDGd7Ihe6mc3SnWQ6kABcLNmlkA3pXzidnZ34/X4MBgP19fVQd1E6AJ9+c5gBuJpvPHeIN49344skcFvH/xeZGkvS+fB+1FAS4wwHJX+1UP7aFmKMxJIpjrQF2d/sywRePwdb/AWXDraZ9KzIlDJkQ2+NW67QFxPbSDpbdHd3s3XrVhYtWkQ4HM61est2tohEIqRSqbN2t4D07PVwgrLUJk9ucvaKpH8btOw3ZFlZGUajEeouhnf+J30h3DDMKbezoNLBkfYgWxva+cCF49trV1M1uh87TLItjM5ppOyvl6Kbhg3thRgLwViSA5lZ3WzYPdoeKNiRwWzQsbjGxbJaFxfMcHPhLA8LKp2TejU1IQaT7WxhsVjweDysWbMm/Tu0n0QiQTAYzAXj/rdsUI7H48Tjcbq6uujq6hryta1Wa14gLhSW7Xa7rLw3QUkALpLsUsjZGuBQKASki/2BdAAGaNoJqQTozz6je83SKo60B3lpf9u4B2D/5pNED3SBQaHs40sxuOUtJCHORWcwlith2N/sZ3+Tr2CvXUgvLrGs1s2yWhfLZrhYVutmbrkdg9TtCpHHaDRSUlJCSUnJkPvFYrFBQ3LfoJxKpYhEIkQiEdrb2wc9XrY+uX8w7h+WrVarrL43ziQAF0uuDVr6L8NsAHY4Mt0SyuaDtQQiPdC6B2asOeshNy6r5gdbj7G1oZ1YMjVufTjDu9oJvJxu31Zy00LMsyZOL2IhJipN0zjTE8mb1d3f7KPNHyu4f7XLkg66tS6WZkKvdGQQYnSZzWbMZvOQF+9la5OHCsrZm6ZpBINBgsHgoBfxQX6P5qGCstlslu/5USIBuEi0XA3wIDPAOh3MvAiOvJgugxhGAL5ghptKp5n2QIzXjnRy9ZLCS2aOpvjpAN2/TV904LhiJvZVhS9mEGI6S6ZUjnWE+oRdHwea/QX77CoKzCmzs7TW1Tu7W+uiTJYNFmJC6FubPNjS1NBbn3y2kBwKhVBVFZ/Ph8/nG/K1jUbjoDXJ2bDscDhkgZFhkABcJP3boA0IwJC+EO7Ii+kL4S75zFmPqdMpXLe8moe3neSfn97Hslo31W7L6A8+I+WL0fnLA5DUsCwuxb1p9pi9lhCTRSSe4lCrPzere6DZx6HWALGkOmBfo15hYZUzE3LTYXdJjQu7WX40CzHZ9Z3VHUoymRyyPjl7i0ajJBKJs67AB+kOG4MF5WxYdjgc07o+WX7KFkluBjjzny/bwiU/AGfqgId5IRzA3dcs4rWjnRzrCPE3v9jO43+3HscY/DLVEik6/+cAaiCOocpG6UcWochFNmKa8YbjmYvTemt2j3UEUQdem4bdpM/N6i7NzOouqHRikuXBhZjWDAYDHo8Hj8cz5H7xePysIdnv95NMJnMLjHR0dAx5zEL1yYUu5JuK9ckSgItlkBngXA0wwIzVoOjB3wS+M+CeedbDOq16/r+bq7nz13s40Bbl73+9g5/fftGoXhSjaRrdvz1C4kwQnc1A+V8vRWeR/0pi6tI0jRZfhP1N+WG30OppAOUOU65ONzu7W19qQyd/JAohzpHJZKKsrIyyssEXx9I0jVgslrtYb6hbtkQjFArR2to66DF1Oh0Oh2PQgHy2VQEnKkktRaINchFc3gywyQ7VK6BlV7oMYogA3B3t5ndHfscTh5+gKdgEteAE3tYU1v3KSqXdg8PkwGF04DK5cvedJidl1jIWly5mUckiHKazL1kc2HqayO4O0CmU3rYEQ1nxl14WYrREEymOtgc53BbgQLOP/z2g42u7t9ITThTcv67UyrKa/E4MlU65UEUIMf4URTnrAiOQrk+ORCJnDcrBYBBVVXPLWheyZMkSbrnllrH6ksaMBOAiybZB0xuMaJpWOABDugyiZVe6DGL5Tf2OofF2+9s83vA4m09uJqGmf0GbdCZUVJJqEkXRSBKmORSG0NnHVe+qZ0npEhaXLmZJ2RKWlC6hxNLbNiayvwv/iycB8HxgHpZ5nnP7BxCiyJIplcauEA2tQRraAhxuDXC4LUBjV6hfCYMOSKDXKcyvcGS6MPSWMhRj0RkhhDgfOp0Ou92O3W4fdJERgFQqRSgUGjIoD9UxYyKb8AH4/vvv56mnnuLQoUNYrVYuvfRSvvnNb7Jo0aLcPtFolC9+8Ys8+uijxGIxNm3axA9+8IMhr84str4LYUQiEdTM4wEBuH49vPXfsPe3cOU9YPUQiAd45vgzPN7wOEe9R3O7Li9bzocXfZhr51yLRW8hlorx09cP8B9b9qDoItx59UyW15kIxoME4gECiQDBeJDmUDOHug/RGmrlpP8kJ/0neaHxhdxxq+3VLCldwjr9hVyxeT46FOzra3BcPPg3jRAThapqNHkjHG4L5IJuQ1uQY+1B4qmBF6YBeGxGFlU5mV9hJ9nZyIevuZRlM0uwGKfvBSNCiOlHr9fjcrlwuaZee9MJH4BfeeUV7rzzTtatW0cymeTLX/4yGzdu5MCBA7mw+IUvfIFnn32WJ554ArfbzV133cWNN97I66+/XuTRD6FPDXB29tdsNg9cWnHRe6F8IXQe5sDme3i8vIrnTjxHJJmuPbQarFw/53puXnQzy8qW5X2qxWDhritW0+238PPXT/DfL+j41d+uY9PCwrU63dFuDnUd4mD3wfSt6yCnAqdoDbXiDfTwkRPvQpdU2G07zE9S/8HqbatZW7WWtdVrqbRJ+zNRXJqm0RmM09DaN+gGONIWIFRgeWBILxG8oMrJoioHC6ucLKp2sqjKSUWmhCGRSPDccye4YKYbo4RfIYSYMiZ8AH7hhRfyHv/iF7+gsrKSnTt3cvnll+Pz+fjZz37GI488wlVXXQXAQw89xJIlS3jjjTe45JJLijHss+rtA6zHX+gCuOx+eiPPrbmZX+/5KXt7XoOe9PZ57nncvOhmbph3Ay7T0H+Z/f/eu4Qmb5gX97fxqV/u4Km/v5R5FQNfq9RSyqUzLuXSGZfmtgXjQQ51HUT5fRdVcTs+Y5Bvzvg5PQE/xwLHeOLwE0C6dGJt1VrWVK1hXfU6qu3V5/TvIsRw+CIJjrTlB93DbUG6Q/GC+xv1CvMqHCyqdqaDbibszvBY5cI0IYSYhiZ8AO4v2yQ6e8Xhzp07SSQSbNiwIbfP4sWLmTVrFtu2bSsYgGOxGLFY72pL2cLuRCJBIlH4QpfRlEgk0NT0jJSq9b6+zWYb8PpPHX2Kfz38P2AxY9A0NmDnpg3/yerK1bmLbIYz5m/fuJxWX5TdZ3zc/vO3+O2nLxpWY32zYmbBsWoCjVHQwey/voinan7POx3vsLNtJzvbd9LQ05ArnXjyyJMAzHTMZHXlatZUrmFN1Rpq7bUj+jeabLLnYDz+/0wn0USKYx0hDrel63SPtAc53BakdZDV0hQF6kttLKh0sLDKwcJKBwuqHMwus2Es0AkllUqSKjw5DMh5nYrknE5Ncl6nnkLndDTPr6JpWoGOlROTqqq8//3vx+v18tprrwHwyCOPcMcdd+QFWoCLLrqI97znPXzzm98ccJyvfe1r3HfffQO2P/LII9hstrEZfB+apnHsNz8FYPaNH6MnEOTMmTN4PB7mzJmT2y+qRfmu/7uEtBCX6S/g6yc2U5mKsX32nTSXXDzi1w0k4Lt79XTFFOodGnctTWE6y7u6toCeRftd6DSF0/Vh2mujA/aJqBFOpk7SmGzkRPIEzalmNPL/W3kUD7MNs5ljmMMcwxxKdCVylbzISanQEYWWsJK+RdL3O6OgUfj/icekUWPTqLGR/mjVqLJy1v/TQgghJqdwOMxHP/pRfD7fedclT6oZ4DvvvJN9+/blwu+5uueee7j77rtzj/1+P3V1dWzcuHFcCr2jkUguAG/ctIk3d+zkzJkzzJ07l+uuuy633/d3fZ+QL0S9s57vvPcnmF/7Dvzvt1nb9TuSN/+/dJu0EVp3aYhbfvIWJ4MJXgrU8v2PrEQ/yFvAajhB1w/2ompxzEtKWHPrxcMKrcFEkN0du9nZvpMdbTs42H0Qr+ZlV2IXuxK7AKiyVbG6cjVrK9eypnINdc66SR2IE4kEmzdv5pprrsFolK4Ag1FVjSZfhMNtQY60BWloC3KkPcjxzhCJVOG/xUtsxrzZ3IWVDhZUOnCNQ/cFOa9Tj5zTqUnO69RT6JwO1ortXEyaAHzXXXfxzDPP8OqrrzJzZm8/3OrqauLxOF6vN28Vlba2NqqrC9ehms1mzOaBb/8bjcZx+cZJ9JmtNlssRCLpC9pcLlfu9ZuCTfz60K8B+Id1/4DNbIPLvwh7HkPxncL4xvfh6q+M+LUX1Xr48V+v5WM/fZPNB9v51ktHufeGpQP201SNrqcaUH1x9GUWym5ZjM40vP8uJcYSrqy/kivrrwQgnAizq30X29u2s6N1B/u69tEWbuP5xud5vvF5ACqsFaytXsvaqrWsq17HbNfsSRmIx+v/0EQXT6qc6g7T2BmisSuU6cAQ5EhbgPAgF6TZMxekLc7W6WY+ljtMRf+/IOd16pFzOjXJeZ16+p7T0Ty3Ez4Aa5rGZz/7WX73u9+xdevWvBIBgDVr1mA0GtmyZQs33ZTuk9vQ0MCpU6dYv359MYZ8VmoqmbvftwtE3xZoD+x8gLga5+Lqi7li5hXpjUYrbPr/4PGPw1++B6tug9K5I379i+aU8u8fXsn//c07/Pz1E9SVWrnjsvx/18DW00QbesCgo+y2Jee10pvNaMu7uC6SjLC7YzfbW9OBeG/nXjoiHTx/4nmeP5EOxOXWctZVrWNt9eQOxFNZStVo6olwvDOYCbphjneGaOwMcaYnXHA5YACTXse8Ske680Km68LCKrkgTQghxPiZ8AH4zjvv5JFHHuH3v/89Tqczt1yf2+3GarXidrv55Cc/yd13301paSkul4vPfvazrF+/fsJ2gEglewOwXq8fEIB3te/ihcYXUFD4x3X/mB/8ltwAc6+E41vhhS/DRx89pzG8f2UtZ3rCfOuFBu774wG2Hevi7o0LWVztInq0B//m9GIXJR+Yh6n27KvDjYTVYOWSmku4pCZ9fqLJKHs69rCjbQfbW7ezp2MPnZHOvBliCcTFoaoarf4ojZ2hXLht7ErfP90dHrRsAdItxmaX2ZlTbmdepSM3szu7zDaqS3MLIYQQIzXhA/APf/hDAK688sq87Q899BCf+MQnAPjud7+LTqfjpptuylsIY6JSM5edKzodik5HMBgE0gFY1VS+vf3bAHxowYdYVLoo/5MVBa77FvzwUjj8PBzZDAuuOadxfOaKefgjSX786jFeOtDG5oNt3Lqkms+ciKNoYFtbhX3d2LczsxgsXFRzERfVXARALBVLB+LWHWxv287u9t0SiMeQpml0BGM0doY50RnkRGdv6UJjV4hoovBiEQAmg47ZZbZ00K2wM6fMzuxyO3PL7bleukIIIcREM+ED8HCaVFgsFh588EEefPDBcRjR+cuWQOj06X/+UJ8+wC+ceIE9nXuwGqzcdeFdhQ9QsQgu/jvY9l/w/D/BnMvBcPaWZv0pisKXrlvMX62ZwXc3H+GFvS2864AfBQMdVh0Vl9dSeMmMsWXWm1lXvY511ev4DJ+RQDxKekJxTnSlZ3FPZG6NXSEaO8MEY8lBP8+gU5hVamN2ub1f0LVR65ayBSGEEJPPhA/AU5GaTM8A6/R6EokE8Xi6eb/erOeBtx8A4G9X/C0VtorBD3LFP8HeJ6D7GLzxA3jXF855PPMrnTx422qOPXYQ8zudBNG4K+Kj/T9f5aMXzeLO98yn0mU55+OfLwnEwxeIJtIzuQWCrjc8eP9ERYGZJdZcycKc8vRM7pwyOzNLrFKyIIQQYkqRAFwEqcwMsN7QewGcXq/n8WOP0xJqodpezV8v/euhD2JxwYb74Om/g1e+DRfcAq5zX2wisq8T8zudACQ31VN/tIWmY108vO0kj+04ze3rZ/N/rphHqd10zq8xWs4nEK+uWs2qylXM98xHr5ucDWMj8RQnu0Oc6Aj1C7phOoOFF4jIqnZZesNtuY055Q7mlNuoK7VhNkzOfw8hhBBipCQAF4Ga7C2ByNb/2uw2frbvZwB8bvXnsBiGMeN6wS2w4+dw5i3YfC/c9NNzGk+iM0L3E4cBcLx7BjPfU88j76nnL0c7+fZLDbxzyst/v3qcX795ir951xxuX18/rFXkxsu5BGK70c4F5RewqnIVF1ZeyAUVF2A3jryv8liIJlK0+KK0eCM0+6I0eyO0+CKc7ApzojNEi2/gYiR9lTtMuZnc2eW9M7r1ZTZsw2xlJ4QQQkxl8tuwCLIXwekMvR0gMEE4GabOWcf1c64f3oF0Orj+2/DjK9PlEGvugNmXjWws8RTdvzqIFkthmu3Cfe3s3HOXzi/nqXllvNzQzr+/eJgDLX6+t+UI39tyhCqXmUXVLhZn2lgtqnYyv9KBxVj8WcShAvHb7W+zp2MPoUSIbS3b2NayDQCdomNhyUIurLiQVZWrWFW5imp79aiXTSRTKu2BGC2+CM3ebLhNf2z2RWjxRukKxc96HJfFwJwKB3PK0rO4s8ttucDrskgPTCGEEGIoEoCLoPciuN4ArBrTV9rP88xDp4yg3rL2QlhzO+z8BTz//+DTr4B++KfV+4djJFpD6BxGyj66GKVfraeiKFy1uIorF1bywv5WvrflCIdaA7T5Y7T5O3j1cEduX50Cs8vtmVDsYlF1OhjPKrUNutrceOgbiAFSaooj3iO80/4Ou9p3sat9F82hZg51H+JQ9yEebUi3lqu0VebC8IUVF7KodBEG3eD/tpoGXaE4naFwOtBmw212FtcboS0QIzVYg9w+rEY9NR4LMzxWatwWatxW6kptudncEptxWtQ0CyGEEGNBAnARZGeA9X0WwYjp07Wbdc66kR/wqnth/9PQtg92PgQXfWpYnxZ6u43wjjZQoPQji9C7Bi9r0OkUrl9Rw/UravBHExxpC3CoNUBDa+9HXyTB8Y4QxztCPLe3Nfe5FqMuvbJXZqY4e6twFKdNll6nZ3HpYhaXLubWxbcC0BZq452O3kB8qPsQ7eF2Xmx8kRcbXwTAqDNTY15EqWEhdm0eSmw2wYiRnnCc7mCcDr+exBtbz/r6Bp1ClSsTbj3pcDsj8zEbet1WCbhCCCEmOE0DNQn6yffOowTgIsguhKHrcxFcUEnXAs90zBz08wZlL4Or/hme+wf487/CshvT24aQaA/jffooAK6rZ2GZXzLsl3NZjKypL2VNfW+TNE3TaA/EMmHYT0NrkIY2P0fagkQTKnvO+Nhzxpd3nFK7aUAonlfuwKBX0DLHTH8ENNDQ0DQGPKeln8x7rGmgaumP9NkeiqXSgTUUpyccpyeU6PO4hJ7wZfSELiIWDhI3NKK3NqK3nUJvPUmCKKciezjFnswxFdRkJanUbFLMImWYDYlSyh2WAYG27/1yh7moM+JCCCEEyTjE/Olb1A+xQOZxIPPY3+9xoN++vvTHC2+DD/xXsb+aEZMAXAR9SyCyF8F1q93AOc4AQ7r+d+cv0rPAf/463PCfg+6qJVJ0P3IQLa5inufGedWsc3vNPhQlPatZ5bJwxcLe9m0pVaOxK8ThPjPFDW0BGrtCdIfibDvexbbjXef9+qNPD/F5KNH5uOMmPHE9NnsXiqWRmP44Pu0wgVQbekv6RsmbADhNLpaXLWN5+XKWlS1jWfkyqmxVMpsrhBBidKgqxAMFQquvQIjNhtYCz6WG7ho0bLHA6BxnnEkALoLePsC9M8DtyXYwwUznOcwAQ7ru9/pvw0PXwc6H00smz99QcFfvH4+TaA2jcxgp/chilDGcjdTrFOZVOJhX4eC6FTW57ZF4iqPtQQ61+nOhuKE1QHtg5N+QigIK6RCu5B6nNyqATlFy+1hNBkrtRkpspvTNbsp7XGpPbyuxGSmxm3CaDYOG185IJ7vbd/NO+zu83fY2B7oOEIj78y6uAyizlLGsfFk6EGdCcbm1fMRfpxBCiElM0yAR6RNEz3HmNT7KgdPkALMTzK50i9XsfbMTLO5+j7PPu/s8do3ueMaJBOAi6K0B1uPPBOCAEkBBYYZjxrkfuP5SWPFh2Ps4/OqvYP2dcNVXwNjbUi28q53QW63put9bFqF3Fqevr9WkZ8VMNytmuvO2RxMpNC0dYqE3zBYMuUWeVS23lnN1/dVcXX81iUSCPzz7B+avn0+Dt4H9XfvZ37mfo96jdEW7ePXMq7x65tXc51bZqnJheHnZcpaWLcVj8RTvixFCCDG4VHKI0DrEzGtu/8w2dfBVN0dMb+oXTF2DhNg+z+WF2MzHSdoT/3xJAC6C3hrg3i4QUX2UKnsVJv15BtIbHkgH3rd/mV4q+djLcOOPoXo5iY4wPU+l636d76nDsmD4db/jZSK0UTtXBsXA0tKlrKxamdsWTUY51H2I/V37OdB1gP2d+znuO05buI22cBt/Pv3n3L4zHDN6SyfKlrGkbAlOk7MYX4oQQkwNqgqJ0CChtFBo9RWeeU1GRnFQysCgOqLQmtnfMHH68U9GEoCLIFsDrOiMhMNhAGK6GIuci87/4CY7vP/7sPA6+MNnoX0//OQ9aFd8he53LkOLpzDNceG6uv78X0uclcVg4cLKC7mw8sLctlAixMGug+lZ4kwwPuk/SVOwiaZgU67rBMBs1+xc+cTi0sXM88yj1FJa4JWEEGKKGXCRVoEygcx9fcTHJWeOoX/4wXSJQN/9OHvryWEz2gYPqgVDbP9yAWe65ECuCyk6CcBFkC2B0Ax6tFj6GzOuj59bB4jBLL4eZq5Lh+DDz+N9sZlEKozOqqPsI4tR9PLNVyx2o5211WtZW702t80X83Gw+yD7O3tDcVOwiUZ/I43+Rp49/mxu31JLKfM885jnnsd8z3zmedIfpYRCCDEhaBrEgwXqVwvMvg62PRaA5NCrXvalA6oA/IPtYOgXTN2FywHOVi4wCdt9icIkABdBdgZY1ekAFc2ooSnauV8ANxhHBdz6G8K/f5LQG1UAlCrfQH/iY7DyI/IX6ATiNru5pOYSLqm5JLetO9qdK5vY37WfIz1HaAo20R3tpru1m+2t2/OOUWYpSwdjT34wdpvd/V9OCCEKSyVGHlb7348HQFNHb0wmR4GAmh9WU0Y7uxsauWDdZRjsJQNnXg0W+Z0n8kgALoLsDHBK0QMqCUMCOI8WaENIdkfpeacWSOH0vIYl+ho8/Rocfh7e9wDY5O30iarUUsq7ZryLd814V25bOBHmhP8Ex7zHOOo9yjHvMY55j9EUbKIr2kVXaxdvtb6Vd5xya/mAUDzPMw+XaXJeuSuEKEDTIB7qVybg61cyUKh8oF+IHc1a1+ysa99SgMHqXgt2Gxj+RVpqIsHpzudYsfh6MMosrTg7CcBFkL0ILpVZ8jispOuAR7UEAtCSKl2PHEKLpTDVu3B98h/gDQNs/Tc48Hs49SZ84EFYULhdmph4bEZb7iK5vsKJMMd9x3OhOPuxJdRCZ6STzkgnb7a8mfc5ldbKATPG8zzz5MI7IcbbgA4Dg9e6Fg60maA7mrOuRvvwwuqAffpepCWzrmLikgBcBGo2AGceB5R0T7/RngH2PXeCRFMQnc1A6a2LUUxGuPwfYd7V8NSnoesI/PomWPMJuOROqFg4qq8vxo/NaGN5+XKWly/P2x5KhHKzxLkZY98xWkOttEfaaY+05/UsBqi0VQ6YLZ7nnofD5BjPL0mIiU9NpWtdY8HMTGqgzwIFIwixifDojUnRF7gwa+jygQEh1uRM95YXYgqT/+FFkCuBIP2XcUwfw2F0jGqtZmRfJ8G/NANQ8uFFGDx92qXMWA3/51X409fgrf9OryC38xdQuxpW3grLbzrrUspicrAb7VxQcQEXVFyQtz0YD3LMlx+Mj3qP0h5uz93+0vyXvM+ptlenQ7E7PxzbjLbx/JKEOD+ahl6NQbANUtHejgGFbvHg0M/Fg6M7NqNtiLDqHt52o1VmXYUYBgnARZC9CC6R6cwS1Uepc9aN2sIOye4o3b89AoDj8hlYFxeo8zXZ4PpvweL3whs/gCObofnt9O3Fe2DBpvSFcgs3Sa/BKchhcrCyYiUrK1bmbffH/Rz3Diyl6Ih00BpqpTXUyutNr+d9Tq29lrmeuXmzxnPdcyUYi9GVjPfOsJ41sPrzZ2Vzz/kxxAK8T1Nh9yiOTWfMzKA6GbSOdTizstJhQIhxIwG4CLI1wEktnYBj+hgLnAtG5dhaUqXrN4fQoklMs5y4N80e+hPmXpG+BTtg329h92+gZTc0PJu+WTzpGeGVt8LMtTKzMMW5TK4BfYsh3aat/4V3x3zH6Ix00hxqpjnUzGtNr+V9zgzHjFxd8WzXbGodtcxwzKDaXo1RJ7/op4VcicC5BNa++wYhNfJl0gvJ/gTTUFDMLjA78sNr344Dec+5+iwZm30us59MEggx6UgALoJsCURCzQRgXWzUWqD5XmgkcTqAYs3U/ep1w/tERwVc8pn0rf1gOgjveRwCLbDjZ+lb6bx0EF50HZQvBENxllEW489tdrO6ajWrq1bnbfdGvQVLKbqj3bmFPfouAQ2gU3RU2aqY4ZhBraOWmY6ZzHDOoNZey0znTCqsFein6dKcE4KmpWtSs8EzW6c60sAaC6RX4BptuYUInH0CaaEg6+wXVtP7JXQWXtz6Fza970MYTfIzTIjpSgJwEeQCcOZjVB8dlQ4QkX2dBF9rAqD0rxZiKLGc24Eql8A1X4ervwonXoHdj8HBP0D3MXj5X9M3nQHKFkDVUqjM3KqWgnsW6IYZusWk57F4WGNZw5qqNXnbe6I9eYH4TPAMTYEmmoPNxNU4LaEWWkIt0DbwmAadgRp7DTMcM3K37OzxTOdMyixlo1YuNGWoqXQLrNwt2PuxUGAdUEbQ77nR7CYA/UoECsyu5s265gfWvFlXk+P8L85KJEjppTuBENOdBOAiUFNJNCCeSv+SienPfwY40Rmh+4nDQKbud9koXMSm08O8q9K32H/AwT/Cnseg6e10252Og+kbT/Z+jskBFYszwXhZb0C2l5//eMSkUWIpYV31OtZVr8vbrmoqXZGu3OxwUzAdirMBuTXUSlJNcjpwmtOB0wWPbdabqXXU9s4e95lJrnXU4jF7Jm5A1jRIxfuF1Oz98CDbC93v93g0e7fmKOcXVvvepERACDHBSAAuglQyBTodap8a4PNpgaYlUnT/6mC63+9s19nrfs+F2QEX3pq+aRr4m6DtALTvz3w8CJ0N6V/KTTvSt77slb2huHJJ+n7FkvTFeGLa0Ck6KmwVVNgqBtQZA6TUFO3h9ryA3Dcot4XbiKVinPCd4ITvRMHXsBlszHDOYIZ9Rq60YoZzRi4gD7vPcaZ+1ZzwQc8JUGNnD6LDeU5Nnse/4FkouvRb/yZ7+nvrXGtazc50qcFE/UNCCCHOkwTgIlBTSbTM1b5JJQn6dIupc9Xz+2MkWkPoHEbKPjqCut9zpSjgnpm+LdzYuz2VgK5j6VDcfrA3IPc0QqgdjrfD8a19DwSlc/JLKCoWg60crB65Inoa0uv01DhqqHHUsJa1A55PpBK0Bpto8p6gyX+SpsCZdEAOt9Ic6aAj7iOcDHOk5whHeo4UfA0XBmYoRmZgYIamUJvSmJlIUpuIUxuLYktEIBGBVAwjcC3AvrH4Ys2ZoOrIfLQP4/FZ7hvMElqFEGIYJAAXgZpMohnS//QxfYwae805XxUf2tFKeEdbOkt+ZBF6VxHfatQboXJx+tZXLAgdDX1mizMBOdQB3cfTt0PPDDyeyZHuQmEtSQdiqyfzOLMt77mS3ufMbqlDHg+qmn47PxVP//GTdz+Wvz0ZTYfKRCR9gVXuY7TP4z7PJSMF9zcmItSl4gz2fklUUWgx6GkyGPrc9DQb0/d79Hr8JPFrSQ5mP0mfuVkAp5HSlI4ZCTMzkklqk0mqkinKFSOVOjNleisVRjuW3CzrOQZWo10WGhBCiCKSn8BFkEqlUDOzm1F99Jzrf+MtIXqePgaAa0M9lvklozbGUWV2wMw16VtfwY4+oThz6zyari+G3kbz/jMjfEElvVRnoXBstIHelA7remP64pzsY51hkOcy23XG3uf0psz+mfsqGFJhiPogqU+XiUDmo9bvIwW2ne0j6bfkU/FMuOwfOAuF0GHeT8ZGcIw+27QURWewphv/G21gtGAxWpljtDEnt83aZx8rIb2RZpI0aQma1AhNqRDNiQBNcS9NsW4CyQjdej3dej17KfTHZArw4zRqlNtMlFsNlFsdVFgrqLBWUGYtS5d4WCsot5bjMrkmbj2yEEJMYxKAi0BN5c8An0v9rxpN0v3rg5BUsSwqwfme0V1GeVw4KsBxJcy9Mn97Kpm+aj3SAxFv+mPU2/t4sPuRnszFQFp6e9QLPePzpRiB9wLsGZ/Xm5Dy/oAw9fnDwpgLoPQNptn7BkufbbZ++1oHPpcNtAbLiGf67cCCzK0Qf9yf61ZxJniG0/7T7D2xF4PbQFe0i85IJ7FUjEAiQMAXGLQOOcukM1FuLc/dKmwVvfetFZTbyim3lFNmLcOgkx/HQggxXuQnbhGoqRSaIT0DfC4dIDRNo+fJIyQ7I+jdZko+vAhFN4VmmfQGsJWmbyOVjA0dmhOR9Cymmp3JTKY/qonM7GZmu5rsM+M5jP3RhhxWvsy5UpT0/eF+1Onzg6XelO7F3H/bsO4b0zWoI/68vq9t7jMbbpwSZScukwtXmYslZUsASCQSPNf+HNdvvB6j0YimaQQSATrDnXRGOumIdNAZ6XM/3LvNH/cTV+O5hUKGoqBQYinJzRwXCsvZGWZZYU8IIc6fBOAiUJO9F8FFddERzwAHX28msrcT9Aqlty1Gb5eLxXIMZnBWpW/jKBGL8sJzf+Taa6/DaDQVDrHyVvikpyhKOiSbXMz1zB1y31gqlgvH2WDcEemgK9KVvh9O3++KdpHSUnRHu+mOdtPQ0zDkce1Ge15QHiwsu81uKb8QQohBSAAuglS/EoiRLIIRO+nH91z6bVfP9XMwz3KNyRjFCOn0qLrMrKhB/iAR6X7F2YU8hpJSU/TEenpnksMdA2eXM9uiqSihRIhQIkSjv3HI4xp0BjxmD06TMxfaXWYXTqMTl9nVuy2z3WVy5fa1G+0SnoUQU5oE4CJQU6ncDPBISiBSoQTdjxwEVcO6ohz7pbVjOUwhxDjQ6/S52duhaJpGKBEqGIz7BuaOSAe+mI+kmsw9N1I6RZcfnLPhuF9QdplduIyuvEDtMDmknlkIMeHJT6kiUJMptMzKSAaLYViN+TVVo/uxBlK+OIZyKyU3LZAZGiGmEUVRcJgcOEwO5rjnDLlvPBWnK9KFL+7DH/Pjj/sJxAP44358MV/ufvYWiAdy+yXUBKqm4ov58GU7soyQ3WjPD8rZ2ec+j50mJ26ze0DANutl1TghxNiTAFwEaiqJanEAUOoa3oVegZdPEzvcg2LUUfaxJegscuqEEIWZ9Kb0giLUjOjzNE0jloqlg3HMTyDRG4xzt36Bum+ADifDALkyjZZQy4jHbtabBwTlvjPMebPP/co4bAabTAwIIYZFUlQRJJPJXBP8Ks/ZL9aKHunB/6eTAHg+OB9jtX1MxyeEmJ4URcFisGAxWKi0VY748xNqgkA8kDej3H+2ecD2Po810gE8FomdU+mGXtHnAnL/oJyrbzbYORo/SmlLKaW20rz99Tr9iF9TCDE5SQAugqSabpmloTKjdOgLZJLeGN2PNoAG9nXV2NeMb3cDIYQYLqPOSKmllFLLyFsYqppKKBEaUJLRt3RjsJnnbOlGSkvhjXnxxrxnfb3HXn5swDaH0ZEXnPtfMNh/NrpvaYeUbggxuUgALoJkpmdsXIkzyzVr0P3USJLOh/ahhhIYa+x43j902yUhhJisshfeDeeaiP76l24MNfPsj/lpbGnE4DQQTATzSjeCiSDBRPCcSzeyodhmtKVn0vXp2XSrwZq7X/Cx3pq73/ex1ZD+aNab0SmTv8+2EBOJBOAiSGrpGrW4bvAOEFpSpet/DpBsC6NzmSi7fSmKUd6eE0KI/kZSupFIJHjuuee4/vr04iYwstKNQjPU2dKNbK/nsdA3MFv0veH4XIJ132PkjmOwYNRJC0cxfUgALoJk5mNcV3gZZE3T6PntYWLHfSgmPeWfWIbBYxnfQQohxDQx2qUbkWSESCpCNBnN3fIep6JEkoUfR5IRoqn09lgqlnudaCq9H7EhBnOeDIohLyD3nYU+59lsgzVvm8xmi4lCAnARJDNL4Sb0cSqsFQOe9794kvCuDtAplH1sCaZax3gPUQghxDCcT+nG2aiamgvIBYP0WYJ1NkwPFraz91VNBSCpJXNlIGNptGezrQYrek2PV/XSHe3Gqlkx6owYdUb0il46g4iCJAAXQSrz16/BbBhw1XHwzRYCW08DUHLjAiwLS8Z9fEIIIYpPp+iwGW3YjLYxew1N00iqybwg3XcWun/Izs1UnyWIF2s2+9+f+ve8xwoKJr0pF4iNOiNGfb+Pmdug+/W7fz7HM+lMA45rUAwS0otAAnARqJnQa7XllzVEDnbhffooAK4Ns7CvlY4PQgghxo6iKOlApjfiMrnG7HXONpsdSUYGBu9+j89WOhJLxkiRynvdXGu91BjWjoyCASF5iAA+IGCfw34mvQmDznDW181+rkFnmHKlKxKAx5mmaWiZHsAOR/qHjaZqBP/SjP/FRtDAtrYK59WDd4cQQgghJpOxns3OXtx43XXXoRgUEqkECTVzSyWIq/H8bWqCeCqe9zj3/FD7pQrsX+hYBY6XHUNcjQ8cf+ZzchcJTUAGxVAwbF9VdxX/sO4fij28EZsyAfjBBx/k29/+Nq2traxcuZLvf//7XHTRRcUe1gBqKoVmSP+zl7nLSLSG6HnyCPHTAQAsi0sp+dB8eTtECCGEGCFFUXIBbaLSNI2UlsoLzkk1OSAon3cIz4TtvscutN9gY8jWhmcltSTJZJIIkbztPbGe8fznGzVTIgA/9thj3H333fzoRz/i4osv5oEHHmDTpk00NDRQWTny1YzGkppKounT35hLO+pp+947oGooZj3u6+dgX1eNopPwK4QQQkxFiqJgUAwYdAasBmuxhzOolJoaMoQn1SRxNY7b7C72UM/JlAjA3/nOd/jUpz7FHXfcAcCPfvQjnn32WX7+85/zpS99qcijyxcPhdAM6QBc22AHNHRlKUzzI8S69hJ7YW9xByjOiZpKYdtzAK/OhE4v/ZqnCjmvU4+c06lJzuvYM2ZuA7ZX69FWaZPunetJH4Dj8Tg7d+7knnvuyW3T6XRs2LCBbdu2FfycWCxGLNZbEO/3+4F0DVEikRjT8Z558xBk/pMoqpG3IklavBocm/SnYpozABdzuKnY4xCjS87r1CPndGqS81o8ndzx7zGM5tH9wyObx/rmstHMaJM+dXV2dpJKpaiqyu+YUFVVxaFDhwp+zv3338999903YPtLL72EzTZ27WYAulpPUpFwECfOKwGVhDamLyeEEEIIMaZefPFFdGOUKDdv3py7Hw6HR+24kz4An4t77rmHu+++O/fY7/dTV1fHxo0bcbnGrg0MpIvfw74IL7+6lauuWpdbilNMbolEgj//+c9cddVVck6nEDmvU4+c06lJzmtxGUy6US+BSCQSbN68mWuuuSZ3TrPv2I+GSR+Ay8vL0ev1tLW15W1va2ujurq64OeYzWbMZvOA7UajcVy+cRSPgs4ANodFvlGniERCL+d0CpLzOvXIOZ2a5LxOXX2z2Wie20nf1dhkMrFmzRq2bNmS26aqKlu2bGH9+vVFHJkQQgghhJiIJv0MMMDdd9/N7bffztq1a7nooot44IEHCIVCua4QQgghhBBCZE2JAHzLLbfQ0dHBvffeS2trKxdeeCEvvPDCgAvjhBBCCCGEmBIBGOCuu+7irrvuKvYwhBBCCCHEBDfpa4CFEEIIIYQYCQnAQgghhBBiWpEALIQQQgghphUJwEIIIYQQYlqRACyEEEIIIaYVCcBCCCGEEGJakQAshBBCCCGmFQnAQgghhBBiWpEALIQQQgghphUJwEIIIYQQYlqRACyEEEIIIaYVCcBCCCGEEGJakQAshBBCCCGmFUOxBzARaJoGgN/vH5fXSyQShMNh/H4/RqNxXF5TjC05p1OTnNepR87p1CTndeopdE6zOS2b286HBGAgEAgAUFdXV+SRCCGEEEKIoQQCAdxu93kdQ9FGI0ZPcqqq0tzcjNPpRFGUMX89v99PXV0dp0+fxuVyjfnribEn53RqkvM69cg5nZrkvE49hc6ppmkEAgFqa2vR6c6vildmgAGdTsfMmTPH/XVdLpd8o04xck6nJjmvU4+c06lJzuvU0/+cnu/Mb5ZcBCeEEEIIIaYVCcBCCCGEEGJakQBcBGazma9+9auYzeZiD0WMEjmnU5Oc16lHzunUJOd16hnrcyoXwQkhhBBCiGlFZoCFEEIIIcS0IgFYCCGEEEJMKxKAhRBCCCHEtCIBWAghhBBCTCsSgMfZgw8+yOzZs7FYLFx88cW89dZbxR6SGIGvfe1rKIqSd1u8eHHu+Wg0yp133klZWRkOh4ObbrqJtra2Io5Y9Pfqq69yww03UFtbi6IoPP3003nPa5rGvffeS01NDVarlQ0bNnDkyJG8fbq7u7nttttwuVx4PB4++clPEgwGx/GrEP2d7bx+4hOfGPC9e+211+btI+d1Yrn//vtZt24dTqeTyspKPvjBD9LQ0JC3z3B+5p46dYr3vve92Gw2Kisr+cd//EeSyeR4fikiYzjn9Morrxzwvfp3f/d3efuMxjmVADyOHnvsMe6++26++tWv8vbbb7Ny5Uo2bdpEe3t7sYcmRmDZsmW0tLTkbq+99lruuS984Qv88Y9/5IknnuCVV16hubmZG2+8sYijFf2FQiFWrlzJgw8+WPD5b33rW3zve9/jRz/6EW+++SZ2u51NmzYRjUZz+9x2223s37+fzZs388wzz/Dqq6/y6U9/ery+BFHA2c4rwLXXXpv3vfub3/wm73k5rxPLK6+8wp133skbb7zB5s2bSSQSbNy4kVAolNvnbD9zU6kU733ve4nH4/zlL3/h4Ycf5he/+AX33ntvMb6kaW845xTgU5/6VN736re+9a3cc6N2TjUxbi666CLtzjvvzD1OpVJabW2tdv/99xdxVGIkvvrVr2orV64s+JzX69WMRqP2xBNP5LYdPHhQA7Rt27aN0wjFSADa7373u9xjVVW16upq7dvf/nZum9fr1cxms/ab3/xG0zRNO3DggAZo27dvz+3z/PPPa4qiaE1NTeM2djG4/udV0zTt9ttv1z7wgQ8M+jlyXie+9vZ2DdBeeeUVTdOG9zP3ueee03Q6ndba2prb54c//KHmcrm0WCw2vl+AGKD/OdU0Tbviiiu0z33uc4N+zmidU5kBHifxeJydO3eyYcOG3DadTseGDRvYtm1bEUcmRurIkSPU1tYyd+5cbrvtNk6dOgXAzp07SSQSeed48eLFzJo1S87xJHHixAlaW1vzzqHb7ebiiy/OncNt27bh8XhYu3Ztbp8NGzag0+l48803x33MYvi2bt1KZWUlixYt4jOf+QxdXV255+S8Tnw+nw+A0tJSYHg/c7dt28aKFSuoqqrK7bNp0yb8fj/79+8fx9GLQvqf06xf//rXlJeXs3z5cu655x7C4XDuudE6p4bzHLsYps7OTlKpVN4JA6iqquLQoUNFGpUYqYsvvphf/OIXLFq0iJaWFu677z7e/e53s2/fPlpbWzGZTHg8nrzPqaqqorW1tTgDFiOSPU+Fvk+zz7W2tlJZWZn3vMFgoLS0VM7zBHbttddy4403MmfOHI4dO8aXv/xlrrvuOrZt24Zer5fzOsGpqsrnP/95LrvsMpYvXw4wrJ+5ra2tBb+fs8+J4il0TgE++tGPUl9fT21tLXv27OGf/umfaGho4KmnngJG75xKABZiBK677rrc/QsuuICLL76Y+vp6Hn/8caxWaxFHJoQYykc+8pHc/RUrVnDBBRcwb948tm7dytVXX13EkYnhuPPOO9m3b1/eNRdichvsnPatu1+xYgU1NTVcffXVHDt2jHnz5o3a60sJxDgpLy9Hr9cPuDq1ra2N6urqIo1KnC+Px8PChQs5evQo1dXVxONxvF5v3j5yjieP7Hka6vu0urp6wIWryWSS7u5uOc+TyNy5cykvL+fo0aOAnNeJ7K677uKZZ57h5ZdfZubMmbntw/mZW11dXfD7OfucKI7BzmkhF198MUDe9+ponFMJwOPEZDKxZs0atmzZktumqipbtmxh/fr1RRyZOB/BYJBjx45RU1PDmjVrMBqNeee4oaGBU6dOyTmeJObMmUN1dXXeOfT7/bz55pu5c7h+/Xq8Xi87d+7M7fPnP/8ZVVVzP6jFxHfmzBm6urqoqakB5LxORJqmcdddd/G73/2OP//5z8yZMyfv+eH8zF2/fj179+7N++Nm8+bNuFwuli5dOj5fiMg52zktZNeuXQB536ujck7P4aI9cY4effRRzWw2a7/4xS+0AwcOaJ/+9Kc1j8eTdyWjmNi++MUvalu3btVOnDihvf7669qGDRu08vJyrb29XdM0Tfu7v/s7bdasWdqf//xnbceOHdr69eu19evXF3nUoq9AIKC988472jvvvKMB2ne+8x3tnXfe0U6ePKlpmqb927/9m+bxeLTf//732p49e7QPfOAD2pw5c7RIJJI7xrXXXqutWrVKe/PNN7XXXntNW7BggXbrrbcW60sS2tDnNRAIaP/wD/+gbdu2TTtx4oT2pz/9SVu9erW2YMECLRqN5o4h53Vi+cxnPqO53W5t69atWktLS+4WDodz+5ztZ24ymdSWL1+ubdy4Udu1a5f2wgsvaBUVFdo999xTjC9p2jvbOT169Kj29a9/XduxY4d24sQJ7fe//702d+5c7fLLL88dY7TOqQTgcfb9739fmzVrlmYymbSLLrpIe+ONN4o9JDECt9xyi1ZTU6OZTCZtxowZ2i233KIdPXo093wkEtH+/u//XispKdFsNpv2oQ99SGtpaSniiEV/L7/8sgYMuN1+++2apqVboX3lK1/RqqqqNLPZrF199dVaQ0ND3jG6urq0W2+9VXM4HJrL5dLuuOMOLRAIFOGrEVlDnddwOKxt3LhRq6io0IxGo1ZfX6996lOfGjD5IOd1Yil0PgHtoYceyu0znJ+5jY2N2nXXXadZrVatvLxc++IXv6glEolx/mqEpp39nJ46dUq7/PLLtdLSUs1sNmvz58/X/vEf/1Hz+Xx5xxmNc6pkBiSEEEIIIcS0IDXAQgghhBBiWpEALIQQQgghphUJwEIIIYQQYlqRACyEEEIIIaYVCcBCCCGEEGJakQAshBBCCCGmFQnAQgghhBBiWpEALIQQQgghphUJwEIIMUl94hOf4IMf/GCxhyGEEJOOodgDEEIIMZCiKEM+/9WvfpX//M//RBbzFEKIkZMALIQQE1BLS0vu/mOPPca9995LQ0NDbpvD4cDhcBRjaEIIMelJCYQQQkxA1dXVuZvb7UZRlLxtDodjQAnElVdeyWc/+1k+//nPU1JSQlVVFT/5yU8IhULccccdOJ1O5s+fz/PPP5/3Wvv27eO6667D4XBQVVXFxz/+cTo7O8f5KxZCiPEjAVgIIaaQhx9+mPLyct566y0++9nP8pnPfIabb76ZSy+9lLfffpuNGzfy8Y9/nHA4DIDX6+Wqq65i1apV7NixgxdeeIG2tjY+/OEPF/krEUKIsSMBWAghppCVK1fyz//8zyxYsIB77rkHi8VCeXk5n/rUp1iwYAH33nsvXV1d7NmzB4D/+q//YtWqVXzjG99g8eLFrFq1ip///Oe8/PLLHD58uMhfjRBCjA2pARZCiCnkggsuyN3X6/WUlZWxYsWK3LaqqioA2tvbAdi9ezcvv/xywXriY8eOsXDhwjEesRBCjD8JwEIIMYUYjca8x4qi5G3LdpdQVRWAYDDIDTfcwDe/+c0Bx6qpqRnDkQohRPFIABZCiGls9erVPPnkk8yePRuDQX4lCCGmB6kBFkKIaezOO++ku7ubW2+9le3bt3Ps2DFefPFF7rjjDlKpVLGHJ4QQY0ICsBBCTGO1tbW8/vrrpFIpNm7cyIoVK/j85z+Px+NBp5NfEUKIqUnRZBkhIYQQQggxjcif90IIIYQQYlqRACyEEEIIIaYVCcBCCCGEEGJakQAshBBCCCGmFQnAQgghhBBiWpEALIQQQgghphUJwEIIIYQQYlqRACyEEEIIIaYVCcBCCCGEEGJakQAshBBCCCGmFQnAQgghhBBiWvn/A1l4ntdkNkoDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Update the parameters and create a new JAXProblem instance\n", + "jax_problem = jax_problem.update_parameters(jax_problem.parameters + noise)\n", + "\n", + "# Run simulations with the updated parameters\n", + "llh, results = run_simulations(jax_problem)\n", + "\n", + "# Plot the simulation results\n", + "plot_simulation(results)" + ] + }, + { + "cell_type": "markdown", + "id": "e73bdd447a4d48c8", + "metadata": {}, + "source": [ + "## Computing Gradients\n", + "\n", + "Similar to updating attributes, computing gradients in the JAX ecosystem can feel a bit unconventional if you’re not familiar with the JAX ecosysmt. JAX offers [powerful automatic differentiation](https://jax.readthedocs.io/en/latest/automatic-differentiation.html) through the `jax.grad` function. However, to use `jax.grad` with `JAXProblem`, we need to specify which parts of the `JAXProblem` should be treated as static." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a8918f59607e6525", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:00.662578Z", + "start_time": "2024-11-19T09:51:00.649386Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error: Argument 'ParameterMappingForCondition(map_sim_var={'Epo_degradation_BaF3': 'Epo_degradation_BaF3', 'k_exp_hetero': 'k_exp_hetero', 'k_exp_homo': 'k_exp_homo', 'k_imp_hetero': 'k_imp_hetero', 'k_imp_homo': 'k_imp_homo', 'k_phos': 'k_phos', 'ratio': 0.693, 'specC17': 0.107, 'noiseParameter1_pSTAT5A_rel': 'sd_pSTAT5A_rel', 'noiseParameter1_pSTAT5B_rel': 'sd_pSTAT5B_rel', 'noiseParameter1_rSTAT5A_rel': 'sd_rSTAT5A_rel'},scale_map_sim_var={'Epo_degradation_BaF3': 'log10', 'k_exp_hetero': 'log10', 'k_exp_homo': 'log10', 'k_imp_hetero': 'log10', 'k_imp_homo': 'log10', 'k_phos': 'log10', 'ratio': 'lin', 'specC17': 'lin', 'noiseParameter1_pSTAT5A_rel': 'log10', 'noiseParameter1_pSTAT5B_rel': 'log10', 'noiseParameter1_rSTAT5A_rel': 'log10'},map_preeq_fix={},scale_map_preeq_fix={},map_sim_fix={},scale_map_sim_fix={})' of type is not a valid JAX type.\n" + ] + } + ], + "source": [ + "try:\n", + " # Attempt to compute the gradient of the run_simulations function\n", + " jax.grad(run_simulations, has_aux=True)(jax_problem)\n", + "except TypeError as e:\n", + " print(\"Error:\", e)" + ] + }, + { + "cell_type": "markdown", + "id": "922a9ffd94c99607", + "metadata": {}, + "source": "Fortunately, `equinox` simplifies this process by offering [filter_grad](https://docs.kidger.site/equinox/api/transformations/#equinox.filter_grad), which enables autodiff functionality that is compatible with `JAXProblem` and, in theory, also with `JAXModel`." + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e2c635b6-79db-4e78-8738-789af29110b5", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:07.293314Z", + "start_time": "2024-11-19T09:51:00.709141Z" + } + }, + "outputs": [], + "source": [ + "import equinox as eqx\n", + "\n", + "# Compute the gradient using equinox's filter_grad, preserving auxiliary outputs\n", + "grad, _ = eqx.filter_grad(run_simulations, has_aux=True)(jax_problem)" + ] + }, + { + "cell_type": "markdown", + "id": "8fd639ad39948e72", + "metadata": {}, + "source": "Functions transformed by `filter_grad` return gradients that share the same structure as the first argument (unless specified otherwise). This allows us to access the gradient with respect to the parameters attribute directly `via grad.parameters`." + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ab9225bf704e9ed5", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:07.310244Z", + "start_time": "2024-11-19T09:51:07.306293Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Array([ 2.39759630e+01, -1.36704159e-01, 1.33625245e+01, 3.25229304e+01,\n", + " 4.88660333e-05, 5.39482681e+01, -5.13624151e+00, -2.90885864e-02,\n", + " 6.08639536e+01], dtype=float64)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grad.parameters" + ] + }, + { + "cell_type": "markdown", + "id": "5793acc4ad8908be", + "metadata": {}, + "source": "Attributes for which derivatives cannot be computed (typically anything that is not a [jax.numpy.array](https://jax.readthedocs.io/en/latest/_autosummary/jax.numpy.array.html)) are automatically set to `None`." + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "77e6bc4fa3e6970a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:07.398319Z", + "start_time": "2024-11-19T09:51:07.392032Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "JAXProblem(\n", + " parameters=f64[9],\n", + " model=JAXModel_Boehm_JProteomeRes2014(api_version='0.0.1'),\n", + " _parameter_mappings={'model1_data1': None},\n", + " _measurements={('model1_data1',): (f64[3], f64[45], f64[0], f64[48], None)},\n", + " _petab_problem=None\n", + ")" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grad" + ] + }, + { + "cell_type": "markdown", + "id": "75fc08817f1b4734", + "metadata": {}, + "source": "Observant readers may notice that the gradient above appears to include numeric values for derivatives with respect to some measurements. However, `simulation_conditions` internally disables gradient computations using `jax.lax.stop_gradient`, resulting in these values being zeroed out." + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a8b7634e-7bd8-41ae-a6dc-1d0f29993ac0", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:07.455764Z", + "start_time": "2024-11-19T09:51:07.450233Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(Array([0., 0., 0.], dtype=float64),\n", + " Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64),\n", + " Array([], shape=(0,), dtype=float64),\n", + " Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64),\n", + " None)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grad._measurements[simulation_condition]" + ] + }, + { + "cell_type": "markdown", + "id": "3c6c4f2d3a2673a2", + "metadata": {}, + "source": "However, we can compute derivatives with respect to data elements using `JAXModel.simulate_condition`. In the example below, we differentiate the observables `y` (specified by passing `y` to the `ret` argument) with respect to the timepoints at which the model outputs are computed after the solving the differential equation. While this might not be particularly practical, it serves as an nice illustration of the power of automatic differentiation." + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2a843410-4af4-4ff7-8b67-9293a5820caf", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:13.735937Z", + "start_time": "2024-11-19T09:51:07.494491Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n", + " 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n", + " ...,\n", + " [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n", + " -1.30871686e-01, 0.00000000e+00, -3.80465095e-11],\n", + " [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n", + " 0.00000000e+00, -2.69250222e-01, -7.93596886e-11],\n", + " [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,\n", + " 0.00000000e+00, 0.00000000e+00, -2.29968854e-02]], dtype=float64)" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import jax.numpy as jnp\n", + "import diffrax\n", + "\n", + "# Define the simulation condition\n", + "simulation_condition = (\"model1_data1\",)\n", + "\n", + "# Load condition-specific data\n", + "ts_preeq, ts_dyn, ts_posteq, my, iys = jax_problem._measurements[\n", + " simulation_condition\n", + "]\n", + "\n", + "# Load parameters for the specified condition\n", + "p = jax_problem.load_parameters(simulation_condition[0])\n", + "# Disable preequilibration\n", + "p_preeq = jnp.array([])\n", + "\n", + "\n", + "# Define a function to compute the gradient with respect to dynamic timepoints\n", + "@eqx.filter_jacfwd\n", + "def grad_ts_dyn(tt):\n", + " return jax_problem.model.simulate_condition(\n", + " p=p,\n", + " p_preeq=p_preeq,\n", + " ts_preeq=ts_preeq,\n", + " ts_dyn=tt,\n", + " ts_posteq=ts_posteq,\n", + " my=jnp.array(my),\n", + " iys=jnp.array(iys),\n", + " solver=diffrax.Kvaerno5(),\n", + " controller=diffrax.PIDController(atol=1e-8, rtol=1e-8),\n", + " max_steps=2**10,\n", + " adjoint=diffrax.DirectAdjoint(),\n", + " ret=\"y\", # Return observables\n", + " )[0]\n", + "\n", + "\n", + "# Compute the gradient with respect to `ts_dyn`\n", + "g = grad_ts_dyn(ts_dyn)\n", + "g" + ] + }, + { + "cell_type": "markdown", + "id": "a9cec2a77b30669d", + "metadata": {}, + "source": [ + "## Compilation & Profiling\n", + "\n", + "To maximize performance with JAX, code should be just-in-time (JIT) compiled. This can be achieved using the `jax.jit` or `equinox.filter_jit` decorators. While JIT compilation introduces some overhead during the first function call, it significantly improves performance for subsequent calls. To demonstrate this, we will first clear the JIT cache and then profile the execution." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "d1f79c45ab2eccdc", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:14.292251Z", + "start_time": "2024-11-19T09:51:13.834276Z" + } + }, + "outputs": [], + "source": [ + "from time import time\n", + "\n", + "# Clear JAX caches to ensure a fresh start\n", + "jax.clear_caches()\n", + "\n", + "# Define a JIT-compiled gradient function with auxiliary outputs\n", + "gradfun = eqx.filter_jit(eqx.filter_grad(run_simulations, has_aux=True))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b44881332070e2b0", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:23.060962Z", + "start_time": "2024-11-19T09:51:14.309832Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Function compilation time: 2.53 seconds\n", + "Gradient compilation time: 6.21 seconds\n" + ] + } + ], + "source": [ + "# Measure the time taken for the first function call (including compilation)\n", + "start = time()\n", + "run_simulations(jax_problem)\n", + "print(f\"Function compilation time: {time() - start:.2f} seconds\")\n", + "\n", + "# Measure the time taken for the gradient computation (including compilation)\n", + "start = time()\n", + "gradfun(jax_problem)\n", + "print(f\"Gradient compilation time: {time() - start:.2f} seconds\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "a3e1463209074861", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:25.374277Z", + "start_time": "2024-11-19T09:51:23.078334Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "16.6 ms ± 609 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%%timeit\n", + "run_simulations(\n", + " jax_problem,\n", + " controller=diffrax.PIDController(\n", + " rtol=1e-8, # same as amici default\n", + " atol=1e-16, # same as amici default\n", + " pcoeff=0.4, # recommended value for stiff systems\n", + " icoeff=0.3, # recommended value for stiff systems\n", + " dcoeff=0.0, # recommended value for stiff systems\n", + " ),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "2f074fbbebf834c6", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:31.394645Z", + "start_time": "2024-11-19T09:51:25.459759Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "39.8 ms ± 854 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + ] + } + ], + "source": [ + "%%timeit \n", + "gradfun(\n", + " jax_problem,\n", + " controller=diffrax.PIDController(\n", + " rtol=1e-8, # same as amici default\n", + " atol=1e-16, # same as amici default\n", + " pcoeff=0.4, # recommended value for stiff systems\n", + " icoeff=0.3, # recommended value for stiff systems\n", + " dcoeff=0.0, # recommended value for stiff systems\n", + " ),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "5f68c5fcc16b637", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:55.244925Z", + "start_time": "2024-11-19T09:51:31.477484Z" + } + }, + "outputs": [], + "source": [ + "from amici.petab import simulate_petab\n", + "import amici\n", + "\n", + "# Import the PEtab problem as a standard AMICI model\n", + "amici_model = import_petab_problem(\n", + " petab_problem,\n", + " compile_=False, # do not recompile\n", + " verbose=False,\n", + " jax=False, # load the amici model this time\n", + ")\n", + "\n", + "# Configure the solver with appropriate tolerances\n", + "solver = amici_model.getSolver()\n", + "solver.setAbsoluteTolerance(1e-8)\n", + "solver.setRelativeTolerance(1e-8)\n", + "\n", + "# Prepare the parameters for the simulation\n", + "problem_parameters = dict(\n", + " zip(jax_problem.parameter_ids, jax_problem.parameters)\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "413ed7c60b2cf4be", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:55.259985Z", + "start_time": "2024-11-19T09:51:55.257937Z" + } + }, + "outputs": [], + "source": [ + "# Profile simulation only\n", + "solver.setSensitivityOrder(amici.SensitivityOrder.none)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "768fa60e439ca8b4", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:57.417608Z", + "start_time": "2024-11-19T09:51:55.273367Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "26.1 ms ± 2.71 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" + ] + } + ], + "source": [ + "%%timeit \n", + "simulate_petab(\n", + " petab_problem,\n", + " amici_model,\n", + " solver=solver,\n", + " problem_parameters=problem_parameters,\n", + " scaled_parameters=True,\n", + " scaled_gradients=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b8382b0b2b68f49e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:57.497361Z", + "start_time": "2024-11-19T09:51:57.494502Z" + } + }, + "outputs": [], + "source": [ + "# Profile gradient computation using forward sensitivity analysis\n", + "solver.setSensitivityOrder(amici.SensitivityOrder.first)\n", + "solver.setSensitivityMethod(amici.SensitivityMethod.forward)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "3bae1fab8c416122", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:59.897459Z", + "start_time": "2024-11-19T09:51:57.511889Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "29.1 ms ± 1.82 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" + ] + } + ], + "source": [ + "%%timeit \n", + "simulate_petab(\n", + " petab_problem,\n", + " amici_model,\n", + " solver=solver,\n", + " problem_parameters=problem_parameters,\n", + " scaled_parameters=True,\n", + " scaled_gradients=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "71e0358227e1dc74", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:51:59.972149Z", + "start_time": "2024-11-19T09:51:59.969006Z" + } + }, + "outputs": [], + "source": [ + "# Profile gradient computation using adjoint sensitivity analysis\n", + "solver.setSensitivityOrder(amici.SensitivityOrder.first)\n", + "solver.setSensitivityMethod(amici.SensitivityMethod.adjoint)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "e3cc7971002b6d06", + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-19T09:52:03.266074Z", + "start_time": "2024-11-19T09:51:59.992465Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "39.3 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" + ] + } + ], + "source": [ + "%%timeit \n", + "simulate_petab(\n", + " petab_problem,\n", + " amici_model,\n", + " solver=solver,\n", + " problem_parameters=problem_parameters,\n", + " scaled_parameters=True,\n", + " scaled_gradients=True,\n", + ")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/python/sdist/amici/__init__.py b/python/sdist/amici/__init__.py index 942b669fa2..ba0391900c 100644 --- a/python/sdist/amici/__init__.py +++ b/python/sdist/amici/__init__.py @@ -121,6 +121,11 @@ def _imported_from_setup() -> bool: assignmentRules2observables, ) + try: + from .jax import JAXModel + except (ImportError, ModuleNotFoundError): + JAXModel = object + @runtime_checkable class ModelModule(Protocol): # noqa: F811 """Type of AMICI-generated model modules. @@ -135,6 +140,11 @@ def get_model(self) -> amici.Model: """Create a model instance.""" ... + def get_jax_model(self) -> JAXModel: + ... + + AmiciModel = Union[amici.Model, amici.ModelPtr] + class add_path: """Context manager for temporarily changing PYTHONPATH""" diff --git a/python/sdist/amici/__init__.template.py b/python/sdist/amici/__init__.template.py index f5e49b03dd..56064535e8 100644 --- a/python/sdist/amici/__init__.template.py +++ b/python/sdist/amici/__init__.template.py @@ -1,9 +1,12 @@ """AMICI-generated module for model TPL_MODELNAME""" from pathlib import Path - +from typing import TYPE_CHECKING import amici +if TYPE_CHECKING: + from amici.jax import JAXModel + # Ensure we are binary-compatible, see #556 if "TPL_AMICI_VERSION" != amici.__version__: raise amici.AmiciVersionError( @@ -18,4 +21,11 @@ from .TPL_MODELNAME import * # noqa: F403, F401 from .TPL_MODELNAME import getModel as get_model # noqa: F401 + +def get_jax_model() -> "JAXModel": + from .jax import JAXModel_TPL_MODELNAME + + return JAXModel_TPL_MODELNAME() + + __version__ = "TPL_PACKAGE_VERSION" diff --git a/python/sdist/amici/de_export.py b/python/sdist/amici/de_export.py index 6b1392a3d1..416dec5694 100644 --- a/python/sdist/amici/de_export.py +++ b/python/sdist/amici/de_export.py @@ -21,6 +21,8 @@ TYPE_CHECKING, Literal, ) +from itertools import chain + import sympy as sp from . import ( @@ -54,6 +56,7 @@ AmiciCxxCodePrinter, get_switch_statement, ) +from .jaxcodeprinter import AmiciJaxCodePrinter from .de_model import DEModel from .de_model_components import * from .import_utils import ( @@ -143,7 +146,10 @@ class DEExporter: If the given model uses special functions, this set contains hints for model building. - :ivar _code_printer: + :ivar _code_printer_jax: + Code printer to generate JAX code + + :ivar _code_printer_cpp: Code printer to generate C++ code :ivar generate_sensitivity_code: @@ -212,14 +218,15 @@ def __init__( self.set_name(model_name) self.set_paths(outdir) - self._code_printer = AmiciCxxCodePrinter() + self._code_printer_cpp = AmiciCxxCodePrinter() + self._code_printer_jax = AmiciJaxCodePrinter() for fun in CUSTOM_FUNCTIONS: - self._code_printer.known_functions[fun["sympy"]] = fun["c++"] + self._code_printer_cpp.known_functions[fun["sympy"]] = fun["c++"] # Signatures and properties of generated model functions (see # include/amici/model.h for details) self.model: DEModel = de_model - self._code_printer.known_functions.update( + self._code_printer_cpp.known_functions.update( splines.spline_user_functions( self.model._splines, self._get_index("p") ) @@ -242,6 +249,7 @@ def generate_model_code(self) -> None: sp.Pow, "_eval_derivative", _custom_pow_eval_derivative ): self._prepare_model_folder() + self._generate_jax_code() self._generate_c_code() self._generate_m_code() @@ -269,6 +277,121 @@ def _prepare_model_folder(self) -> None: if os.path.isfile(file_path): os.remove(file_path) + @log_execution_time("generating jax code", logger) + def _generate_jax_code(self) -> None: + try: + from amici.jax.model import JAXModel + except ImportError: + logger.warning( + "Could not import JAXModel. JAX code will not be generated." + ) + return + + eq_names = ( + "xdot", + "w", + "x0", + "y", + "sigmay", + "Jy", + "x_solver", + "x_rdata", + "total_cl", + ) + sym_names = ("x", "tcl", "w", "my", "y", "sigmay", "x_rdata") + + indent = 8 + + def jnp_array_str(array) -> str: + elems = ", ".join(str(s) for s in array) + + return f"jnp.array([{elems}])" + + # replaces Heaviside variables with corresponding functions + subs_heaviside = dict( + zip( + self.model.sym("h"), + [sp.Heaviside(x) for x in self.model.eq("root")], + strict=True, + ) + ) + # replaces observables with a generic my variable + subs_observables = dict( + zip( + self.model.sym("my"), + [sp.Symbol("my")] * len(self.model.sym("my")), + strict=True, + ) + ) + + tpl_data = { + # assign named variable using corresponding algebraic formula (function body) + **{ + f"{eq_name.upper()}_EQ": "\n".join( + self._code_printer_jax._get_sym_lines( + (str(strip_pysb(s)) for s in self.model.sym(eq_name)), + self.model.eq(eq_name).subs( + {**subs_heaviside, **subs_observables} + ), + indent, + ) + )[indent:] # remove indent for first line + for eq_name in eq_names + }, + # create jax array from concatenation of named variables + **{ + f"{eq_name.upper()}_RET": jnp_array_str( + strip_pysb(s) for s in self.model.sym(eq_name) + ) + if self.model.sym(eq_name) + else "jnp.array([])" + for eq_name in eq_names + }, + # assign named variables from a jax array + **{ + f"{sym_name.upper()}_SYMS": "".join( + str(strip_pysb(s)) + ", " for s in self.model.sym(sym_name) + ) + if self.model.sym(sym_name) + else "_" + for sym_name in sym_names + }, + # tuple of variable names (ids as they are unique) + **{ + f"{sym_name.upper()}_IDS": "".join( + f'"{strip_pysb(s)}", ' for s in self.model.sym(sym_name) + ) + if self.model.sym(sym_name) + else "tuple()" + for sym_name in ("p", "k", "y", "x") + }, + **{ + # in jax model we do not need to distinguish between p (parameters) and + # k (fixed parameters) so we use a single variable combining both + "PK_SYMS": "".join( + str(strip_pysb(s)) + ", " + for s in chain(self.model.sym("p"), self.model.sym("k")) + ), + "PK_IDS": "".join( + f'"{strip_pysb(s)}", ' + for s in chain(self.model.sym("p"), self.model.sym("k")) + ), + "MODEL_NAME": self.model_name, + # keep track of the API version that the model was generated with so we + # can flag conflicts in the future + "MODEL_API_VERSION": f"'{JAXModel.MODEL_API_VERSION}'", + }, + } + os.makedirs( + os.path.join(self.model_path, self.model_name), exist_ok=True + ) + + apply_template( + os.path.join(amiciModulePath, "jax.template.py"), + os.path.join(self.model_path, self.model_name, "jax.py"), + tpl_data, + ) + def _generate_c_code(self) -> None: """ Create C++ code files for the model based on @@ -729,7 +852,7 @@ def _get_function_body( f"reinitialization_state_idxs.cend(), {index}) != " "reinitialization_state_idxs.cend())", f" {function}[{index}] = " - f"{self._code_printer.doprint(formula)};", + f"{self._code_printer_cpp.doprint(formula)};", ] ) cases[ipar] = expressions @@ -744,12 +867,12 @@ def _get_function_body( f"reinitialization_state_idxs.cend(), {index}) != " "reinitialization_state_idxs.cend())\n " f"{function}[{index}] = " - f"{self._code_printer.doprint(formula)};" + f"{self._code_printer_cpp.doprint(formula)};" ) elif function in event_functions: cases = { - ie: self._code_printer._get_sym_lines_array( + ie: self._code_printer_cpp._get_sym_lines_array( equations[ie], function, 0 ) for ie in range(self.model.num_events()) @@ -762,7 +885,7 @@ def _get_function_body( for ie, inner_equations in enumerate(equations): inner_lines = [] inner_cases = { - ipar: self._code_printer._get_sym_lines_array( + ipar: self._code_printer_cpp._get_sym_lines_array( inner_equations[:, ipar], function, 0 ) for ipar in range(self.model.num_par()) @@ -777,7 +900,7 @@ def _get_function_body( and equations.shape[1] == self.model.num_par() ): cases = { - ipar: self._code_printer._get_sym_lines_array( + ipar: self._code_printer_cpp._get_sym_lines_array( equations[:, ipar], function, 0 ) for ipar in range(self.model.num_par()) @@ -787,7 +910,7 @@ def _get_function_body( elif function in multiobs_functions: if function == "dJydy": cases = { - iobs: self._code_printer._get_sym_lines_array( + iobs: self._code_printer_cpp._get_sym_lines_array( equations[iobs], function, 0 ) for iobs in range(self.model.num_obs()) @@ -795,7 +918,7 @@ def _get_function_body( } else: cases = { - iobs: self._code_printer._get_sym_lines_array( + iobs: self._code_printer_cpp._get_sym_lines_array( equations[:, iobs], function, 0 ) for iobs in range(equations.shape[1]) @@ -825,7 +948,7 @@ def _get_function_body( tmp_equations = sp.Matrix( [equations[i] for i in static_idxs] ) - tmp_lines = self._code_printer._get_sym_lines_symbols( + tmp_lines = self._code_printer_cpp._get_sym_lines_symbols( tmp_symbols, tmp_equations, function, @@ -851,7 +974,7 @@ def _get_function_body( [equations[i] for i in dynamic_idxs] ) - tmp_lines = self._code_printer._get_sym_lines_symbols( + tmp_lines = self._code_printer_cpp._get_sym_lines_symbols( tmp_symbols, tmp_equations, function, @@ -863,12 +986,12 @@ def _get_function_body( lines.extend(tmp_lines) else: - lines += self._code_printer._get_sym_lines_symbols( + lines += self._code_printer_cpp._get_sym_lines_symbols( symbols, equations, function, 4 ) else: - lines += self._code_printer._get_sym_lines_array( + lines += self._code_printer_cpp._get_sym_lines_array( equations, function, 4 ) @@ -1024,10 +1147,10 @@ def _write_model_header_cpp(self) -> None: "NK": self.model.num_const(), "O2MODE": "amici::SecondOrderMode::none", # using code printer ensures proper handling of nan/inf - "PARAMETERS": self._code_printer.doprint(self.model.val("p"))[ + "PARAMETERS": self._code_printer_cpp.doprint(self.model.val("p"))[ 1:-1 ], - "FIXED_PARAMETERS": self._code_printer.doprint( + "FIXED_PARAMETERS": self._code_printer_cpp.doprint( self.model.val("k") )[1:-1], "PARAMETER_NAMES_INITIALIZER_LIST": self._get_symbol_name_initializer_list( @@ -1221,7 +1344,7 @@ def _get_symbol_id_initializer_list(self, name: str) -> str: Template initializer list of ids """ return "\n".join( - f'"{self._code_printer.doprint(symbol)}", // {name}[{idx}]' + f'"{self._code_printer_cpp.doprint(symbol)}", // {name}[{idx}]' for idx, symbol in enumerate(self.model.sym(name)) ) diff --git a/python/sdist/amici/jax.template.py b/python/sdist/amici/jax.template.py new file mode 100644 index 0000000000..367ba9e500 --- /dev/null +++ b/python/sdist/amici/jax.template.py @@ -0,0 +1,109 @@ +import jax.numpy as jnp +from interpax import interp1d + +from amici.jax.model import JAXModel + + +class JAXModel_TPL_MODEL_NAME(JAXModel): + api_version = TPL_MODEL_API_VERSION + + def __init__(self): + super().__init__() + + def _xdot(self, t, x, args): + + pk, tcl = args + + TPL_X_SYMS = x + TPL_PK_SYMS = pk + TPL_TCL_SYMS = tcl + TPL_W_SYMS = self._w(t, x, pk, tcl) + + TPL_XDOT_EQ + + return TPL_XDOT_RET + + def _w(self, t, x, pk, tcl): + + TPL_X_SYMS = x + TPL_PK_SYMS = pk + TPL_TCL_SYMS = tcl + + TPL_W_EQ + + return TPL_W_RET + + def _x0(self, pk): + + TPL_PK_SYMS = pk + + TPL_X0_EQ + + return TPL_X0_RET + + def _x_solver(self, x): + + TPL_X_RDATA_SYMS = x + + TPL_X_SOLVER_EQ + + return TPL_X_SOLVER_RET + + def _x_rdata(self, x, tcl): + + TPL_X_SYMS = x + TPL_TCL_SYMS = tcl + + TPL_X_RDATA_EQ + + return TPL_X_RDATA_RET + + def _tcl(self, x, pk): + + TPL_X_RDATA_SYMS = x + TPL_PK_SYMS = pk + + TPL_TOTAL_CL_EQ + + return TPL_TOTAL_CL_RET + + def _y(self, t, x, pk, tcl): + + TPL_X_SYMS = x + TPL_PK_SYMS = pk + TPL_W_SYMS = self._w(t, x, pk, tcl) + + TPL_Y_EQ + + return TPL_Y_RET + + def _sigmay(self, y, pk): + TPL_PK_SYMS = pk + + TPL_Y_SYMS = y + + TPL_SIGMAY_EQ + + return TPL_SIGMAY_RET + + + def _nllh(self, t, x, pk, tcl, my, iy): + y = self._y(t, x, pk, tcl) + TPL_Y_SYMS = y + TPL_SIGMAY_SYMS = self._sigmay(y, pk) + + TPL_JY_EQ + + return TPL_JY_RET.at[iy].get() + + @property + def observable_ids(self): + return TPL_Y_IDS + + @property + def state_ids(self): + return TPL_X_IDS + + @property + def parameter_ids(self): + return TPL_PK_IDS diff --git a/python/sdist/amici/jax/__init__.py b/python/sdist/amici/jax/__init__.py new file mode 100644 index 0000000000..e14d231e1e --- /dev/null +++ b/python/sdist/amici/jax/__init__.py @@ -0,0 +1,6 @@ +"""Interface to facilitate AMICI generated models using JAX""" + +from amici.jax.petab import JAXProblem, run_simulations +from amici.jax.model import JAXModel + +__all__ = ["JAXModel", "JAXProblem", "run_simulations"] diff --git a/python/sdist/amici/jax/model.py b/python/sdist/amici/jax/model.py new file mode 100644 index 0000000000..cecebeab0e --- /dev/null +++ b/python/sdist/amici/jax/model.py @@ -0,0 +1,558 @@ +"""Model simulation using JAX.""" + +# ruff: noqa: F821 F722 + +from abc import abstractmethod + +import diffrax +import equinox as eqx +import jax.numpy as jnp +import jax +import jaxtyping as jt + + +class JAXModel(eqx.Module): + """ + JAXModel provides an abstract base class for a JAX-based implementation of an AMICI model. The class implements + routines for simulation and evaluation of derived quantities, model specific implementations need to be provided by + classes inheriting from JAXModel. + """ + + MODEL_API_VERSION = "0.0.1" + api_version: str + + def __init__(self): + if self.api_version != self.MODEL_API_VERSION: + raise ValueError( + "JAXModel API version mismatch, please regenerate the model class." + ) + super().__init__() + + @abstractmethod + def _xdot( + self, + t: jnp.float_, + x: jt.Float[jt.Array, "nxs"], + args: tuple[jt.Float[jt.Array, "np"], jt.Float[jt.Array, "ncl"]], + ) -> jt.Float[jt.Array, "nxs"]: + """ + Right-hand side of the ODE system. + + :param t: time point + :param x: state vector + :param args: tuple of parameters and total values for conservation laws + :return: + Temporal derivative of the state vector x at time point t. + """ + ... + + @abstractmethod + def _w( + self, + t: jt.Float[jt.Array, ""], + x: jt.Float[jt.Array, "nxs"], + pk: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + ) -> jt.Float[jt.Array, "nw"]: + """ + Compute the expressions, i.e. derived quantities that are used in other parts of the model. + + :param t: time point + :param x: state vector + :param pk: parameters + :param tcl: total values for conservation laws + :return: + Expression values. + """ + ... + + @abstractmethod + def _x0(self, pk: jt.Float[jt.Array, "np"]) -> jt.Float[jt.Array, "nx"]: + """ + Compute the initial state vector. + + :param pk: parameters + """ + ... + + @abstractmethod + def _x_solver( + self, x: jt.Float[jt.Array, "nx"] + ) -> jt.Float[jt.Array, "nxs"]: + """ + Transform the full state vector to the reduced state vector for ODE solving. + + :param x: + full state vector + :return: + reduced state vector + """ + ... + + @abstractmethod + def _x_rdata( + self, x: jt.Float[jt.Array, "nxs"], tcl: jt.Float[jt.Array, "ncl"] + ) -> jt.Float[jt.Array, "nx"]: + """ + Compute the full state vector from the reduced state vector and conservation laws. + + :param x: + reduced state vector + :param tcl: + total values for conservation laws + :return: + full state vector + """ + ... + + @abstractmethod + def _tcl( + self, x: jt.Float[jt.Array, "nx"], pk: jt.Float[jt.Array, "np"] + ) -> jt.Float[jt.Array, "ncl"]: + """ + Compute the total values for conservation laws. + + :param x: + state vector + :param pk: + parameters + :return: + total values for conservation laws + """ + ... + + @abstractmethod + def _y( + self, + t: jt.Float[jt.Scalar, ""], + x: jt.Float[jt.Array, "nxs"], + pk: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + ) -> jt.Float[jt.Array, "ny"]: + """ + Compute the observables. + + :param t: + time point + :param x: + state vector + :param pk: + parameters + :param tcl: + total values for conservation laws + :return: + observables + """ + ... + + @abstractmethod + def _sigmay( + self, y: jt.Float[jt.Array, "ny"], pk: jt.Float[jt.Array, "np"] + ) -> jt.Float[jt.Array, "ny"]: + """ + Compute the standard deviations of the observables. + + :param y: + observables + :param pk: + parameters + :return: + standard deviations of the observables + """ + ... + + @abstractmethod + def _nllh( + self, + t: jt.Float[jt.Scalar, ""], + x: jt.Float[jt.Array, "nxs"], + pk: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + my: jt.Float[jt.Array, ""], + iy: jt.Int[jt.Array, ""], + ) -> jt.Float[jt.Scalar, ""]: + """ + Compute the negative log-likelihood of the observable for the specified observable index. + + :param t: + time point + :param x: + state vector + :param pk: + parameters + :param tcl: + total values for conservation laws + :param my: + observed data + :param iy: + observable index + :return: + log-likelihood of the observable + """ + ... + + @property + @abstractmethod + def state_ids(self) -> list[str]: + """ + Get the state ids of the model. + + :return: + State ids + """ + ... + + @property + @abstractmethod + def observable_ids(self) -> list[str]: + """ + Get the observable ids of the model. + + :return: + Observable ids + """ + ... + + @property + @abstractmethod + def parameter_ids(self) -> list[str]: + """ + Get the parameter ids of the model. + + :return: + Parameter ids + """ + ... + + def _eq( + self, + p: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + x0: jt.Float[jt.Array, "nxs"], + solver: diffrax.AbstractSolver, + controller: diffrax.AbstractStepSizeController, + max_steps: jnp.int_, + ) -> tuple[jt.Float[jt.Array, "1 nxs"], dict]: + """ + Solve the steady state equation. + + :param p: + parameters + :param tcl: + total values for conservation laws + :param x0: + initial state vector + :param solver: + ODE solver + :param controller: + step size controller + :param max_steps: + maximum number of steps + :return: + """ + sol = diffrax.diffeqsolve( + diffrax.ODETerm(self._xdot), + solver, + args=(p, tcl), + t0=0.0, + t1=jnp.inf, + dt0=None, + y0=x0, + stepsize_controller=controller, + max_steps=max_steps, + adjoint=diffrax.DirectAdjoint(), + event=diffrax.Event(cond_fn=diffrax.steady_state_event()), + ) + return sol.ys[-1, :], sol.stats + + def _solve( + self, + p: jt.Float[jt.Array, "np"], + ts: jt.Float[jt.Array, "nt_dyn"], + tcl: jt.Float[jt.Array, "ncl"], + x0: jt.Float[jt.Array, "nxs"], + solver: diffrax.AbstractSolver, + controller: diffrax.AbstractStepSizeController, + max_steps: jnp.int_, + adjoint: diffrax.AbstractAdjoint, + ) -> tuple[jt.Float[jt.Array, "nt nxs"], dict]: + """ + Solve the ODE system. + + :param p: + parameters + :param ts: + time points at which solutions are evaluated + :param tcl: + total values for conservation laws + :param x0: + initial state vector + :param solver: + ODE solver + :param controller: + step size controller + :param max_steps: + maximum number of steps + :param adjoint: + adjoint method + :return: + solution at time points ts and statistics + """ + sol = diffrax.diffeqsolve( + diffrax.ODETerm(self._xdot), + solver, + args=(p, tcl), + t0=0.0, + t1=ts[-1], + dt0=None, + y0=x0, + stepsize_controller=controller, + max_steps=max_steps, + adjoint=adjoint, + saveat=diffrax.SaveAt(ts=ts), + throw=False, + ) + return sol.ys, sol.stats + + def _x_rdatas( + self, x: jt.Float[jt.Array, "nt nxs"], tcl: jt.Float[jt.Array, "ncl"] + ) -> jt.Float[jt.Array, "nt nx"]: + """ + Compute the full state vector from the reduced state vector and conservation laws. + + :param x: + reduced state vector + :param tcl: + total values for conservation laws + :return: + full state vector + """ + return jax.vmap(self._x_rdata, in_axes=(0, None))(x, tcl) + + def _nllhs( + self, + ts: jt.Float[jt.Array, "nt nx"], + xs: jt.Float[jt.Array, "nt nxs"], + p: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + mys: jt.Float[jt.Array, "nt"], + iys: jt.Int[jt.Array, "nt"], + ) -> jt.Float[jt.Array, "nt"]: + """ + Compute the negative log-likelihood for each observable. + + :param ts: + time points + :param xs: + state vectors + :param p: + parameters + :param tcl: + total values for conservation laws + :param mys: + observed data + :param iys: + observable indices + :return: + negative log-likelihoods of the observables + """ + return jax.vmap(self._nllh, in_axes=(0, 0, None, None, 0, 0))( + ts, xs, p, tcl, mys, iys + ) + + def _ys( + self, + ts: jt.Float[jt.Array, "nt"], + xs: jt.Float[jt.Array, "nt nxs"], + p: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + iys: jt.Float[jt.Array, "nt"], + ) -> jt.Int[jt.Array, "nt"]: + """ + Compute the observables. + + :param ts: + time points + :param xs: + state vectors + :param p: + parameters + :param tcl: + total values for conservation laws + :param iys: + observable indices + :return: + observables + """ + return jax.vmap( + lambda t, x, p, tcl, iy: self._y(t, x, p, tcl).at[iy].get(), + in_axes=(0, 0, None, None, 0), + )(ts, xs, p, tcl, iys) + + def _sigmays( + self, + ts: jt.Float[jt.Array, "nt"], + xs: jt.Float[jt.Array, "nt nxs"], + p: jt.Float[jt.Array, "np"], + tcl: jt.Float[jt.Array, "ncl"], + iys: jt.Int[jt.Array, "nt"], + ): + """ + Compute the standard deviations of the observables. + + :param ts: + time points + :param xs: + state vectors + :param p: + parameters + :param tcl: + total values for conservation laws + :param iys: + observable indices + :return: + standard deviations of the observables + """ + return jax.vmap( + lambda t, x, p, tcl, iy: self._sigmay(self._y(t, x, p, tcl), p) + .at[iy] + .get(), + in_axes=(0, 0, None, None, 0), + )(ts, xs, p, tcl, iys) + + @eqx.filter_jit + def simulate_condition( + self, + p: jt.Float[jt.Array, "np"], + p_preeq: jt.Float[jt.Array, "*np"], + ts_preeq: jt.Float[jt.Array, "nt_preeq"], + ts_dyn: jt.Float[jt.Array, "nt_dyn"], + ts_posteq: jt.Float[jt.Array, "nt_posteq"], + my: jt.Float[jt.Array, "nt"], + iys: jt.Int[jt.Array, "nt"], + solver: diffrax.AbstractSolver, + controller: diffrax.AbstractStepSizeController, + adjoint: diffrax.AbstractAdjoint, + max_steps: int | jnp.int_, + ret: str = "llh", + ) -> tuple[jt.Float[jt.Array, "nt *nx"] | jnp.float_, dict]: + r""" + Simulate a condition. + + :param p: + parameters for simulation ordered according to ids in :ivar parameter_ids: + :param p_preeq: + parameters for pre-equilibration ordered according to ids in :ivar parameter_ids:. May be empty to + disable pre-equilibration. + :param ts_preeq: + time points for pre-equilibration. Usually valued 0.0, but needs to be shaped according to + the number of observables that are evaluated after pre-equilibration. + :param ts_dyn: + time points for dynamic simulation. Usually valued > 0.0 and sorted in monotonically increasing order. + Duplicate time points are allowed to facilitate the evaluation of multiple observables at specific time + points. + :param ts_posteq: + time points for post-equilibration. Usually valued \Infty, but needs to be shaped according to + the number of observables that are evaluated after post-equilibration. + :param my: + observed data + :param iys: + indices of the observables according to ordering in :ivar observable_ids: + :param solver: + ODE solver + :param controller: + step size controller + :param adjoint: + adjoint method. Recommended values are `diffrax.DirectAdjoint()` for jax.jacfwd (with vector-valued + outputs) and `diffrax.RecursiveCheckpointAdjoint()` for jax.grad (for scalar-valued outputs). + :param max_steps: + maximum number of solver steps + :param ret: + which output to return. Valid values are + - `llh`: log-likelihood (default) + - `nllhs`: negative log-likelihood at each time point + - `x0`: full initial state vector (after pre-equilibration) + - `x0_solver`: reduced initial state vector (after pre-equilibration) + - `x`: full state vector + - `x_solver`: reduced state vector + - `y`: observables + - `sigmay`: standard deviations of the observables + - `tcl`: total values for conservation laws (at final timepoint) + - `res`: residuals (observed - simulated) + :return: + output according to `ret` and statistics + """ + # Pre-equilibration + if p_preeq.shape[0] > 0: + x0 = self._x0(p_preeq) + tcl = self._tcl(x0, p_preeq) + current_x = self._x_solver(x0) + current_x, stats_preeq = self._eq( + p_preeq, tcl, current_x, solver, controller, max_steps + ) + # update tcl with new parameters + tcl = self._tcl(self._x_rdata(current_x, tcl), p) + else: + x0 = self._x0(p) + current_x = self._x_solver(x0) + stats_preeq = None + + tcl = self._tcl(x0, p) + x_preq = jnp.repeat( + current_x.reshape(1, -1), ts_preeq.shape[0], axis=0 + ) + + # Dynamic simulation + if ts_dyn.shape[0] > 0: + x_dyn, stats_dyn = self._solve( + p, + ts_dyn, + tcl, + current_x, + solver, + controller, + max_steps, + adjoint, + ) + current_x = x_dyn[-1, :] + else: + x_dyn = jnp.repeat( + current_x.reshape(1, -1), ts_dyn.shape[0], axis=0 + ) + stats_dyn = None + + # Post-equilibration + if ts_posteq.shape[0] > 0: + current_x, stats_posteq = self._eq( + p, tcl, current_x, solver, controller, max_steps + ) + else: + stats_posteq = None + + x_posteq = jnp.repeat( + current_x.reshape(1, -1), ts_posteq.shape[0], axis=0 + ) + + ts = jnp.concatenate((ts_preeq, ts_dyn, ts_posteq), axis=0) + x = jnp.concatenate((x_preq, x_dyn, x_posteq), axis=0) + + nllhs = self._nllhs(ts, x, p, tcl, my, iys) + llh = -jnp.sum(nllhs) + return { + "llh": llh, + "nllhs": nllhs, + "x": self._x_rdatas(x, tcl), + "x_solver": x, + "y": self._ys(ts, x, p, tcl, iys), + "sigmay": self._sigmays(ts, x, p, tcl, iys), + "x0": self._x_rdata(x[0, :], tcl), + "x0_solver": x[0, :], + "tcl": tcl, + "res": self._ys(ts, x, p, tcl, iys) - my, + }[ret], dict( + ts=ts, + x=x, + stats_preeq=stats_preeq, + stats_dyn=stats_dyn, + stats_posteq=stats_posteq, + ) diff --git a/python/sdist/amici/jax/petab.py b/python/sdist/amici/jax/petab.py new file mode 100644 index 0000000000..6ddfb7c074 --- /dev/null +++ b/python/sdist/amici/jax/petab.py @@ -0,0 +1,345 @@ +"""PEtab wrappers for JAX models.""" "" + +from numbers import Number +from collections.abc import Iterable + +import diffrax +import equinox as eqx +import jaxtyping as jt +import jax.lax +import jax.numpy as jnp +import numpy as np +import pandas as pd +import petab.v1 as petab + +from amici.petab.parameter_mapping import ( + ParameterMappingForCondition, + create_parameter_mapping, +) +from amici.jax.model import JAXModel + + +def jax_unscale( + parameter: jnp.float_, + scale_str: str, +) -> jnp.float_: + """Unscale parameter according to ``scale_str``. + + Arguments: + parameter: + Parameter to be unscaled. + scale_str: + One of ``petab.LIN``, ``petab.LOG``, ``petab.LOG10``. + + Returns: + The unscaled parameter. + """ + if scale_str == petab.LIN or not scale_str: + return parameter + if scale_str == petab.LOG: + return jnp.exp(parameter) + if scale_str == petab.LOG10: + return jnp.power(10, parameter) + raise ValueError(f"Invalid parameter scaling: {scale_str}") + + +class JAXProblem(eqx.Module): + """ + PEtab problem wrapper for JAX models. + + :ivar parameters: + Values for the model parameters. Do not change dimensions, values may be changed during, e.g. model training. + :ivar model: + JAXModel instance to use for simulation. + :ivar _parameter_mappings: + :class:`ParameterMappingForCondition` instances for each simulation condition. + :ivar _measurements: + Subset measurement dataframes for each simulation condition. + :ivar _petab_problem: + PEtab problem to simulate. + """ + + parameters: jnp.ndarray + model: JAXModel + _parameter_mappings: dict[str, ParameterMappingForCondition] + _measurements: dict[ + tuple[str, ...], + tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray], + ] + _petab_problem: petab.Problem + + def __init__(self, model: JAXModel, petab_problem: petab.Problem): + """ + Initialize a JAXProblem instance with a model and a PEtab problem. + + :param model: + JAXModel instance to use for simulation. + :param petab_problem: + PEtab problem to simulate. + """ + self.model = model + scs = petab_problem.get_simulation_conditions_from_measurement_df() + self._petab_problem = petab_problem + self._parameter_mappings = self._get_parameter_mappings(scs) + self._measurements = self._get_measurements(scs) + self.parameters = self._get_nominal_parameter_values() + + def _get_parameter_mappings( + self, simulation_conditions: pd.DataFrame + ) -> dict[str, ParameterMappingForCondition]: + """ + Create parameter mappings for the provided simulation conditions. + + :param simulation_conditions: + Simulation conditions to create parameter mappings for. Same format as returned by + :meth:`petab.Problem.get_simulation_conditions_from_measurement_df`. + :return: + Dictionary mapping simulation conditions to parameter mappings. + """ + scs = list(set(simulation_conditions.values.flatten())) + mappings = create_parameter_mapping( + petab_problem=self._petab_problem, + simulation_conditions=[ + {petab.SIMULATION_CONDITION_ID: sc} for sc in scs + ], + scaled_parameters=False, + ) + for mapping in mappings: + for sim_var, value in mapping.map_sim_var.items(): + if isinstance(value, Number) and not np.isfinite(value): + mapping.map_sim_var[sim_var] = 1.0 + return dict(zip(scs, mappings, strict=True)) + + def _get_measurements( + self, simulation_conditions: pd.DataFrame + ) -> dict[ + tuple[str], + tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray], + ]: + """ + Get measurements for the model based on the provided simulation conditions. + + :param simulation_conditions: + Simulation conditions to create parameter mappings for. Same format as returned by + :meth:`petab.Problem.get_simulation_conditions_from_measurement_df`. + :return: + Dictionary mapping simulation conditions to measurements (tuple of pre-equilibrium, dynamic, + post-equilibrium time points; measurements and observable indices). + """ + measurements = dict() + for _, simulation_condition in simulation_conditions.iterrows(): + query = " & ".join( + [f"{k} == '{v}'" for k, v in simulation_condition.items()] + ) + m = self._petab_problem.measurement_df.query(query).sort_values( + by=petab.TIME + ) + + ts = m[petab.TIME].values + ts_preeq = ts[np.isfinite(ts) & (ts == 0)] + ts_dyn = ts[np.isfinite(ts) & (ts > 0)] + ts_posteq = ts[np.logical_not(np.isfinite(ts))] + my = m[petab.MEASUREMENT].values + iys = np.array( + [ + self.model.observable_ids.index(oid) + for oid in m[petab.OBSERVABLE_ID].values + ] + ) + + measurements[tuple(simulation_condition)] = ( + ts_preeq, + ts_dyn, + ts_posteq, + my, + iys, + ) + return measurements + + def get_all_simulation_conditions(self) -> tuple[tuple[str, ...], ...]: + simulation_conditions = ( + self._petab_problem.get_simulation_conditions_from_measurement_df() + ) + return tuple(tuple(row) for _, row in simulation_conditions.iterrows()) + + def _get_nominal_parameter_values(self) -> jt.Float[jt.Array, "np"]: + """ + Get the nominal parameter values for the model based on the nominal values in the PEtab problem. + + :return: + jax array with nominal parameter values + """ + return jnp.array( + [ + petab.scale( + self._petab_problem.parameter_df.loc[ + pval, petab.NOMINAL_VALUE + ], + self._petab_problem.parameter_df.loc[ + pval, petab.PARAMETER_SCALE + ], + ) + for pval in self.parameter_ids + ] + ) + + @property + def parameter_ids(self) -> list[str]: + """ + Parameter ids that are estimated in the PEtab problem. Same ordering as values in :attr:`parameters`. + + :return: + PEtab parameter ids + """ + return self._petab_problem.parameter_df[ + self._petab_problem.parameter_df[petab.ESTIMATE] == 1 + ].index.tolist() + + def get_petab_parameter_by_id(self, name: str) -> jnp.float_: + """ + Get the value of a PEtab parameter by name. + + :param name: + PEtab parameter id, as returned by :attr:`parameter_ids`. + :return: + Value of the parameter + """ + return self.parameters[self.parameter_ids.index(name)] + + def _unscale( + self, p: jt.Float[jt.Array, "np"], scales: tuple[str, ...] + ) -> jt.Float[jt.Array, "np"]: + """ + Unscaling of parameters. + + :param p: + Parameter values + :param scales: + Parameter scalings + :return: + Unscaled parameter values + """ + return jnp.array( + [jax_unscale(pval, scale) for pval, scale in zip(p, scales)] + ) + + def load_parameters( + self, simulation_condition: str + ) -> jt.Float[jt.Array, "np"]: + """ + Load parameters for a simulation condition. + + :param simulation_condition: + Simulation condition to load parameters for. + :return: + Parameters for the simulation condition. + """ + mapping = self._parameter_mappings[simulation_condition] + p = jnp.array( + [ + pval + if isinstance(pval := mapping.map_sim_var[pname], Number) + else self.get_petab_parameter_by_id(pval) + for pname in self.model.parameter_ids + ] + ) + pscale = tuple( + [ + mapping.scale_map_sim_var[pname] + for pname in self.model.parameter_ids + ] + ) + return self._unscale(p, pscale) + + def update_parameters(self, p: jt.Float[jt.Array, "np"]) -> "JAXProblem": + """ + Update parameters for the model. + + :param p: + New problem instance with updated parameters. + """ + return eqx.tree_at(lambda p: p.parameters, self, p) + + def run_simulation( + self, + simulation_condition: tuple[str, ...], + solver: diffrax.AbstractSolver, + controller: diffrax.AbstractStepSizeController, + max_steps: jnp.int_, + ) -> tuple[jnp.float_, dict]: + """ + Run a simulation for a given simulation condition. + + :param simulation_condition: + Tuple of simulation conditions to run the simulation for. can be a single string (simulation only) or a + tuple of strings (pre-equilibration followed by simulation). + :param solver: + ODE solver to use for simulation + :param controller: + Step size controller to use for simulation + :param max_steps: + Maximum number of steps to take during simulation + :return: + Tuple of log-likelihood and simulation statistics + """ + ts_preeq, ts_dyn, ts_posteq, my, iys = self._measurements[ + simulation_condition + ] + p = self.load_parameters(simulation_condition[0]) + p_preeq = ( + self.load_parameters(simulation_condition[1]) + if len(simulation_condition) > 1 + else jnp.array([]) + ) + return self.model.simulate_condition( + p=p, + p_preeq=p_preeq, + ts_preeq=jax.lax.stop_gradient(jnp.array(ts_preeq)), + ts_dyn=jax.lax.stop_gradient(jnp.array(ts_dyn)), + ts_posteq=jax.lax.stop_gradient(jnp.array(ts_posteq)), + my=jax.lax.stop_gradient(jnp.array(my)), + iys=jax.lax.stop_gradient(jnp.array(iys)), + solver=solver, + controller=controller, + max_steps=max_steps, + adjoint=diffrax.RecursiveCheckpointAdjoint(), + ) + + +def run_simulations( + problem: JAXProblem, + simulation_conditions: Iterable[tuple] | None = None, + solver: diffrax.AbstractSolver = diffrax.Kvaerno5(), + controller: diffrax.AbstractStepSizeController = diffrax.PIDController( + rtol=1e-8, + atol=1e-8, + pcoeff=0.4, + icoeff=0.3, + dcoeff=0.0, + ), + max_steps: int = 2**10, +): + """ + Run simulations for a problem. + + :param problem: + Problem to run simulations for. + :param simulation_conditions: + Simulation conditions to run simulations for. + :param solver: + ODE solver to use for simulation. + :param controller: + Step size controller to use for simulation. + :param max_steps: + Maximum number of steps to take during simulation. + :return: + Overall negative log-likelihood and condition specific results and statistics. + """ + if simulation_conditions is None: + simulation_conditions = problem.get_all_simulation_conditions() + + results = { + sc: problem.run_simulation(sc, solver, controller, max_steps) + for sc in simulation_conditions + } + return sum(llh for llh, _ in results.values()), results diff --git a/python/sdist/amici/jaxcodeprinter.py b/python/sdist/amici/jaxcodeprinter.py new file mode 100644 index 0000000000..ed9181cc09 --- /dev/null +++ b/python/sdist/amici/jaxcodeprinter.py @@ -0,0 +1,56 @@ +"""Jax code generation""" + +import re +from collections.abc import Iterable +from logging import warning + +import sympy as sp +from sympy.printing.numpy import NumPyPrinter + + +class AmiciJaxCodePrinter(NumPyPrinter): + """JAX code printer""" + + def doprint(self, expr: sp.Expr, assign_to: str | None = None) -> str: + try: + code = super().doprint(expr, assign_to) + code = re.sub(r"numpy\.", r"jnp.", code) + + return code + except TypeError as e: + raise ValueError( + f'Encountered unsupported function in expression "{expr}"' + ) from e + + def _print_AmiciSpline(self, expr: sp.Expr) -> str: + warning("Spline interpolation is support in JAX is untested") + # FIXME: untested, where are spline nodes coming from anyways? + return f'interp1d(time, {self.doprint(expr.args[2:])}, kind="cubic")' + + def _get_sym_lines( + self, + symbols: sp.Matrix | Iterable[str], + equations: sp.Matrix | Iterable[sp.Expr], + indent_level: int, + ) -> list[str]: + """ + Generate C++ code for assigning symbolic terms in symbols to C++ array + `variable`. + + :param equations: + vectors of symbolic expressions + + :param symbols: + names of the symbols to assign to + + :param indent_level: + indentation level (number of leading blanks) + + :return: + C++ code as list of lines + """ + indent = " " * indent_level + return [ + f"{indent}{s} = {self.doprint(e)}" + for s, e in zip(symbols, equations) + ] diff --git a/python/sdist/amici/petab/parameter_mapping.py b/python/sdist/amici/petab/parameter_mapping.py index dc88c1064d..cef4c61e06 100644 --- a/python/sdist/amici/petab/parameter_mapping.py +++ b/python/sdist/amici/petab/parameter_mapping.py @@ -309,7 +309,7 @@ def create_parameter_mapping( petab_problem: petab.Problem, simulation_conditions: pd.DataFrame | list[dict], scaled_parameters: bool, - amici_model: AmiciModel, + amici_model: AmiciModel | None = None, **parameter_mapping_kwargs, ) -> ParameterMapping: """Generate AMICI specific parameter mapping. @@ -399,7 +399,7 @@ def create_parameter_mapping_for_condition( parameter_mapping_for_condition: petab.ParMappingDictQuadruple, condition: pd.Series | dict, petab_problem: petab.Problem, - amici_model: AmiciModel, + amici_model: AmiciModel | None = None, ) -> ParameterMappingForCondition: """Generate AMICI specific parameter mapping for condition. @@ -515,27 +515,38 @@ def create_parameter_mapping_for_condition( # have different variable parameters. without splitting, # merge_preeq_and_sim_pars_condition below may fail. # TODO: This can be done already in parameter mapping creation. - variable_par_ids = amici_model.getParameterIds() - fixed_par_ids = amici_model.getFixedParameterIds() - - condition_map_preeq_var, condition_map_preeq_fix = _subset_dict( - condition_map_preeq, variable_par_ids, fixed_par_ids - ) + if amici_model is not None: + variable_par_ids = amici_model.getParameterIds() + fixed_par_ids = amici_model.getFixedParameterIds() + condition_map_preeq_var, condition_map_preeq_fix = _subset_dict( + condition_map_preeq, variable_par_ids, fixed_par_ids + ) - ( - condition_scale_map_preeq_var, - condition_scale_map_preeq_fix, - ) = _subset_dict( - condition_scale_map_preeq, variable_par_ids, fixed_par_ids - ) + ( + condition_scale_map_preeq_var, + condition_scale_map_preeq_fix, + ) = _subset_dict( + condition_scale_map_preeq, variable_par_ids, fixed_par_ids + ) - condition_map_sim_var, condition_map_sim_fix = _subset_dict( - condition_map_sim, variable_par_ids, fixed_par_ids - ) + condition_map_sim_var, condition_map_sim_fix = _subset_dict( + condition_map_sim, variable_par_ids, fixed_par_ids + ) - condition_scale_map_sim_var, condition_scale_map_sim_fix = _subset_dict( - condition_scale_map_sim, variable_par_ids, fixed_par_ids - ) + condition_scale_map_sim_var, condition_scale_map_sim_fix = ( + _subset_dict( + condition_scale_map_sim, variable_par_ids, fixed_par_ids + ) + ) + else: + condition_map_preeq_var = condition_map_preeq + condition_map_preeq_fix = {} + condition_scale_map_preeq_var = condition_scale_map_preeq + condition_scale_map_preeq_fix = {} + condition_map_sim_var = condition_map_sim + condition_map_sim_fix = {} + condition_scale_map_sim_var = condition_scale_map_sim + condition_scale_map_sim_fix = {} logger.debug( "Fixed parameters preequilibration: " f"{condition_map_preeq_fix}" diff --git a/python/sdist/amici/petab/petab_import.py b/python/sdist/amici/petab/petab_import.py index 52b08cfd47..42a4d85dc4 100644 --- a/python/sdist/amici/petab/petab_import.py +++ b/python/sdist/amici/petab/petab_import.py @@ -37,8 +37,9 @@ def import_petab_problem( model_name: str = None, compile_: bool = None, non_estimated_parameters_as_constants=True, + jax=False, **kwargs, -) -> "amici.Model": +) -> "amici.Model | amici.JAXModel": """ Create an AMICI model for a PEtab problem. @@ -64,6 +65,9 @@ def import_petab_problem( model size and simulation times. If sensitivities with respect to those parameters are required, this should be set to ``False``. + :param jax: + Whether to load the jax version of the model. + :param kwargs: Additional keyword arguments to be passed to :meth:`amici.sbml_import.SbmlImporter.sbml2amici` or @@ -154,6 +158,16 @@ def import_petab_problem( # import model model_module = amici.import_model_module(model_name, model_output_dir) + + if jax: + model = model_module.get_jax_model() + + logger.info( + f"Successfully loaded jax model {model_name} " + f"from {model_output_dir}." + ) + return model + model = model_module.getModel() check_model(amici_model=model, petab_problem=petab_problem) diff --git a/python/sdist/amici/pysb_import.py b/python/sdist/amici/pysb_import.py index 1a21fef1ca..a273759536 100644 --- a/python/sdist/amici/pysb_import.py +++ b/python/sdist/amici/pysb_import.py @@ -180,7 +180,7 @@ def pysb2amici( # Sympy code optimizations are incompatible with PySB objects, as # `pysb.Observable` comes with its own `.match` which overrides # `sympy.Basic.match()`, breaking `sympy.codegen.rewriting.optimize`. - exporter._code_printer._fpoptimizer = None + exporter._code_printer_cpp._fpoptimizer = None exporter.generate_model_code() if compile: diff --git a/python/sdist/pyproject.toml b/python/sdist/pyproject.toml index f768077172..6441ac3300 100644 --- a/python/sdist/pyproject.toml +++ b/python/sdist/pyproject.toml @@ -71,16 +71,26 @@ test = [ # unsupported x86_64 / x86_64h "antimony!=2.14; platform_system=='Darwin' and platform_machine in 'x86_64h'", "scipy", - "pooch" + "pooch", + "beartype", ] -vis =[ +vis = [ "matplotlib", "seaborn", ] -examples =[ +examples = [ "jupyter", "scipy", ] +jax = [ + "jax>=0.4.34", + "jaxlib>=0.4.34", + "diffrax>=0.6.0", + "jaxtyping>=0.2.34", + "equinox>=0.11.8", + "optimistix>=0.0.9", + "interpax>=0.3.3", +] [project.scripts] # amici_import_petab.py is kept for backwards compatibility @@ -121,5 +131,5 @@ line-length = 79 extend-include = ["*.ipynb"] [tool.ruff.lint] -extend-select = ["B028"] +extend-select = ["B028", "UP"] ignore = ["E402", "F403", "F405", "E741"] diff --git a/python/tests/test_jax.py b/python/tests/test_jax.py new file mode 100644 index 0000000000..d124a6e1be --- /dev/null +++ b/python/tests/test_jax.py @@ -0,0 +1,216 @@ +import pytest +import amici + +pytest.importorskip("jax") +import amici.jax + +import jax.numpy as jnp +import jax +import diffrax +import numpy as np +from beartype import beartype + +from amici.pysb_import import pysb2amici +from amici.testing import TemporaryDirectoryWinSafe +from numpy.testing import assert_allclose + +pysb = pytest.importorskip("pysb") + +jax.config.update("jax_enable_x64", True) + + +def test_conversion(): + pysb.SelfExporter.cleanup() # reset pysb + pysb.SelfExporter.do_export = True + + model = pysb.Model("conversion") + a = pysb.Monomer("A", sites=["s"], site_states={"s": ["a", "b"]}) + pysb.Initial(a(s="a"), pysb.Parameter("aa0", 1.2)) + pysb.Rule("conv", a(s="a") >> a(s="b"), pysb.Parameter("kcat", 0.05)) + pysb.Observable("ab", a(s="b")) + + with TemporaryDirectoryWinSafe(prefix=model.name) as outdir: + pysb2amici(model, outdir, verbose=True, observables=["ab"]) + + model_module = amici.import_model_module( + module_name=model.name, module_path=outdir + ) + + ts = tuple(np.linspace(0, 1, 10)) + p = jnp.stack((1.0, 0.1), axis=-1) + k = tuple() + _test_model(model_module, ts, p, k) + + +@pytest.mark.filterwarnings( + "ignore:Model does not contain any initial conditions" +) +def test_dimerization(): + pysb.SelfExporter.cleanup() # reset pysb + pysb.SelfExporter.do_export = True + + model = pysb.Model("dimerization") + a = pysb.Monomer("A", sites=["b"]) + b = pysb.Monomer("B", sites=["a"]) + + pysb.Rule( + "turnover_a", + a(b=None) | None, + pysb.Parameter("kdeg_a", 10), + pysb.Parameter("ksyn_a", 0.1), + ) + pysb.Rule( + "turnover_b", + b(a=None) | None, + pysb.Parameter("kdeg_b", 0.1), + pysb.Parameter("ksyn_b", 10), + ) + pysb.Rule( + "dimer", + a(b=None) + b(a=None) | a(b=1) % b(a=1), + pysb.Parameter("kon", 1.0), + pysb.Parameter("koff", 0.1), + ) + + pysb.Observable("a_obs", a()) + pysb.Observable("b_obs", b()) + + with TemporaryDirectoryWinSafe(prefix=model.name) as outdir: + pysb2amici( + model, + outdir, + verbose=True, + observables=["a_obs", "b_obs"], + constant_parameters=["ksyn_a", "ksyn_b"], + ) + + model_module = amici.import_model_module( + module_name=model.name, module_path=outdir + ) + + ts = tuple(np.linspace(0, 1, 10)) + p = jnp.stack((5, 0.5, 0.5, 0.5), axis=-1) + k = (0.5, 5) + _test_model(model_module, ts, p, k) + + +def _test_model(model_module, ts, p, k): + amici_model = model_module.getModel() + + amici_model.setTimepoints(np.asarray(ts, dtype=np.float64)) + sol_amici_ref = amici.runAmiciSimulation( + amici_model, amici_model.getSolver() + ) + + jax_model = model_module.get_jax_model() + + amici_model.setParameters(np.asarray(p, dtype=np.float64)) + amici_model.setFixedParameters(np.asarray(k, dtype=np.float64)) + edata = amici.ExpData(sol_amici_ref, 1.0, 1.0) + edata.parameters = amici_model.getParameters() + edata.fixedParameters = amici_model.getFixedParameters() + edata.pscale = amici_model.getParameterScale() + amici_solver = amici_model.getSolver() + amici_solver.setSensitivityMethod(amici.SensitivityMethod.forward) + amici_solver.setSensitivityOrder(amici.SensitivityOrder.first) + rs_amici = amici.runAmiciSimulations(amici_model, amici_solver, [edata]) + + check_fields_jax( + rs_amici, jax_model, edata, ["x", "y", "llh", "res", "x0"] + ) + + check_fields_jax( + rs_amici, + jax_model, + edata, + ["sllh", "sx0", "sx", "sres", "sy"], + sensi_order=amici.SensitivityOrder.first, + ) + + +def check_fields_jax( + rs_amici, + jax_model, + edata, + fields, + sensi_order=amici.SensitivityOrder.none, +): + r_jax = dict() + ts = np.array(edata.getTimepoints()) + my = np.array(edata.getObservedData()).reshape(len(ts), -1) + ts = np.repeat(ts.reshape(-1, 1), my.shape[1], axis=1) + iys = np.repeat(np.arange(my.shape[1]).reshape(1, -1), len(ts), axis=0) + my = my.flatten() + ts = ts.flatten() + iys = iys.flatten() + + ts_preeq = ts[ts == 0] + ts_dyn = ts[ts > 0] + ts_posteq = np.array([]) + p = jnp.array(list(edata.parameters) + list(edata.fixedParameters)) + args = ( + jnp.array([]), # p_preeq + jnp.array(ts_preeq), # ts_preeq + jnp.array(ts_dyn), # ts_dyn + jnp.array(ts_posteq), # ts_posteq + jnp.array(my), # my + jnp.array(iys), # iys + diffrax.Kvaerno5(), # solver + diffrax.PIDController(atol=1e-8, rtol=1e-8), # controller + diffrax.RecursiveCheckpointAdjoint(), # adjoint + 2**8, # max_steps + ) + fun = beartype(jax_model.simulate_condition) + + for output in ["llh", "x0", "x", "y", "res"]: + oargs = (*args[:-2], diffrax.DirectAdjoint(), 2**8, output) + if sensi_order == amici.SensitivityOrder.none: + r_jax[output] = fun(p, *oargs)[0] + if sensi_order == amici.SensitivityOrder.first: + if output == "llh": + r_jax[f"s{output}"] = jax.grad(fun, has_aux=True)(p, *args)[0] + else: + r_jax[f"s{output}"] = jax.jacfwd(fun, has_aux=True)(p, *oargs)[ + 0 + ] + + for field in fields: + for r_amici, r_jax in zip(rs_amici, [r_jax]): + actual = r_jax[field] + desired = r_amici[field] + if field == "x": + actual = actual[iys == 0, :] + if field == "y": + actual = np.stack( + [actual[iys == iy] for iy in sorted(np.unique(iys))], + axis=1, + ) + elif field == "sllh": + actual = actual[: len(edata.parameters)] + elif field == "sx": + actual = np.permute_dims( + actual[iys == 0, :, : len(edata.parameters)], (0, 2, 1) + ) + elif field == "sy": + actual = np.permute_dims( + np.stack( + [ + actual[iys == iy, : len(edata.parameters)] + for iy in sorted(np.unique(iys)) + ], + axis=1, + ), + (0, 2, 1), + ) + elif field == "sx0": + actual = actual[:, : len(edata.parameters)].T + elif field == "sres": + actual = actual[:, : len(edata.parameters)] + + assert_allclose( + actual=actual, + desired=desired, + atol=1e-5, + rtol=1e-5, + err_msg=f"field {field} does not match", + ) diff --git a/scripts/installAmiciSource.sh b/scripts/installAmiciSource.sh index c930696380..b5ef9191f5 100755 --- a/scripts/installAmiciSource.sh +++ b/scripts/installAmiciSource.sh @@ -36,5 +36,5 @@ python -m pip install --upgrade pip wheel python -m pip install --upgrade pip setuptools cmake_build_extension==0.6.0 numpy petab python -m pip install git+https://github.com/pysb/pysb@master # for SPM with compartments AMICI_BUILD_TEMP="${AMICI_PATH}/python/sdist/build/temp" \ - python -m pip install --verbose -e "${AMICI_PATH}/python/sdist[petab,test,vis]" --no-build-isolation + python -m pip install --verbose -e "${AMICI_PATH}/python/sdist[petab,test,vis,jax]" --no-build-isolation deactivate diff --git a/tests/benchmark-models/test_petab_benchmark.py b/tests/benchmark-models/test_petab_benchmark.py index b055f8961f..7a0afc6832 100644 --- a/tests/benchmark-models/test_petab_benchmark.py +++ b/tests/benchmark-models/test_petab_benchmark.py @@ -5,6 +5,7 @@ for a subset of the benchmark problems. """ +from functools import partial from pathlib import Path import fiddy import amici @@ -28,10 +29,12 @@ from amici.logging import get_logger from amici.petab.simulations import ( LLH, + SLLH, RDATAS, rdatas_to_measurement_df, simulate_petab, ) + from petab.v1.visualize import plot_problem @@ -252,6 +255,131 @@ def benchmark_problem(request): return problem_id, petab_problem, amici_model +@pytest.mark.filterwarnings( + "ignore:The following problem parameters were not used *", + "ignore: The environment variable *", + "ignore:Adjoint sensitivity analysis for models with discontinuous ", +) +def test_jax_llh(benchmark_problem): + import jax + import equinox as eqx + import jax.numpy as jnp + from amici.jax.petab import run_simulations, JAXProblem + + jax.config.update("jax_enable_x64", True) + from beartype import beartype + + problem_id, petab_problem, amici_model = benchmark_problem + + if problem_id in ( + "Bachmann_MSB2011", + "Isensee_JCB2018", + "Lucarelli_CellSystems2018", + "SalazarCavazos_MBoC2020", + "Smith_BMCSystBiol2013", + ): + # confirmed to work (no gradients) 27/10/2024 but experienced high local runtime (M2 MBA, >30s) + pytest.skip("Excluded from JAX check due to excessive runtime") + + amici_solver = amici_model.getSolver() + cur_settings = settings[problem_id] + amici_solver.setAbsoluteTolerance(1e-8) + amici_solver.setRelativeTolerance(1e-8) + amici_solver.setMaxSteps(10_000) + + simulate_amici = partial( + simulate_petab, + petab_problem=petab_problem, + amici_model=amici_model, + solver=amici_solver, + scaled_parameters=True, + scaled_gradients=True, + log_level=logging.DEBUG, + ) + + np.random.seed(cur_settings.rng_seed) + + problems_for_gradient_check_jax = list( + set(problems_for_gradient_check) - {"Laske_PLOSComputBiol2019"} + # Laske has nan values in gradient due to nan values in observables that are not used in the likelihood + # but are problematic during backpropagation + ) + + problem_parameters = None + if problem_id in problems_for_gradient_check_jax: + point = petab_problem.x_nominal_free_scaled + for _ in range(20): + amici_solver.setSensitivityMethod(amici.SensitivityMethod.adjoint) + amici_solver.setSensitivityOrder(amici.SensitivityOrder.first) + amici_model.setSteadyStateSensitivityMode( + cur_settings.ss_sensitivity_mode + ) + point_noise = ( + np.random.randn(len(point)) * cur_settings.noise_level + ) + point += point_noise # avoid small gradients at nominal value + + problem_parameters = dict(zip(petab_problem.x_free_ids, point)) + + r_amici = simulate_amici( + problem_parameters=problem_parameters, + ) + if np.isfinite(r_amici[LLH]): + break + else: + raise RuntimeError("Could not compute expected derivative.") + else: + r_amici = simulate_amici() + llh_amici = r_amici[LLH] + + jax_model = import_petab_problem( + petab_problem, + model_output_dir=benchmark_outdir / problem_id, + jax=True, + ) + jax_problem = JAXProblem(jax_model, petab_problem) + simulation_conditions = ( + petab_problem.get_simulation_conditions_from_measurement_df() + ) + simulation_conditions = tuple( + tuple(row) for _, row in simulation_conditions.iterrows() + ) + if problem_parameters: + jax_problem = eqx.tree_at( + lambda x: x.parameters, + jax_problem, + jnp.array( + [problem_parameters[pid] for pid in jax_problem.parameter_ids] + ), + ) + if problem_id in problems_for_gradient_check_jax: + (llh_jax, _), sllh_jax = eqx.filter_jit( + eqx.filter_value_and_grad(run_simulations, has_aux=True) + )(jax_problem, simulation_conditions) + else: + llh_jax, _ = beartype(eqx.filter_jit(run_simulations))( + jax_problem, simulation_conditions + ) + + np.testing.assert_allclose( + llh_jax, + llh_amici, + rtol=1e-3, + atol=1e-3, + err_msg=f"LLH mismatch for {problem_id}", + ) + + if problem_id in problems_for_gradient_check_jax: + sllh_amici = r_amici[SLLH] + np.testing.assert_allclose( + sllh_jax.parameters, + np.array([sllh_amici[pid] for pid in jax_problem.parameter_ids]), + rtol=1e-2, + atol=1e-2, + err_msg=f"SLLH mismatch for {problem_id}", + ) + + @pytest.mark.filterwarnings( "ignore:divide by zero encountered in log", # https://github.com/AMICI-dev/AMICI/issues/18