Skip to content

Commit

Permalink
PEtab: fill in fixed parameter values for initial values
Browse files Browse the repository at this point in the history
During PEtab parameter mapping, fill in fixed parameter values for
initial values if requested. So far, this was only done for other
parameters.

Update documentation for amici/petab/parameter_mapping.py

Fixes AMICI-dev#2610.
  • Loading branch information
dweindl committed Dec 2, 2024
1 parent 2366c2e commit 78026f5
Showing 1 changed file with 96 additions and 34 deletions.
130 changes: 96 additions & 34 deletions python/sdist/amici/petab/parameter_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
import re
from collections.abc import Sequence
from itertools import chain
from typing import Any, Union
from typing import Any
from collections.abc import Collection, Iterator

import amici
Expand All @@ -36,6 +36,8 @@
PARAMETER_SCALE,
PREEQUILIBRATION_CONDITION_ID,
SIMULATION_CONDITION_ID,
NOMINAL_VALUE,
ESTIMATE,
)
from petab.v1.models import MODEL_TYPE_PYSB, MODEL_TYPE_SBML
from sympy.abc import _clash
Expand All @@ -52,17 +54,17 @@

logger = logging.getLogger(__name__)

SingleParameterMapping = dict[str, Union[numbers.Number, str]]
SingleParameterMapping = dict[str, numbers.Number | str]
SingleScaleMapping = dict[str, str]


class ParameterMappingForCondition:
"""Parameter mapping for condition.
Contains mappings for free parameters, fixed parameters, and fixed
preequilibration parameters, both for parameters and scales.
pre-equilibration parameters, both for parameters and scales.
In the scale mappings, for each simulation parameter the scale
In the scale mappings, for each simulation parameter, the scale
on which the value is passed (and potentially gradients are to be
returned) is given. In the parameter mappings, for each simulation
parameter a corresponding optimization parameter (or a numeric value)
Expand All @@ -76,9 +78,9 @@ class ParameterMappingForCondition:
:param scale_map_sim_var:
Scales for free simulation parameters.
:param map_preeq_fix:
Mapping for fixed preequilibration parameters.
Mapping for fixed pre-equilibration parameters.
:param scale_map_preeq_fix:
Scales for fixed preequilibration parameters.
Scales for fixed pre-equilibration parameters.
:param map_sim_fix:
Mapping for fixed simulation parameters.
:param scale_map_sim_fix:
Expand Down Expand Up @@ -177,7 +179,7 @@ def __len__(self):
def append(
self, parameter_mapping_for_condition: ParameterMappingForCondition
):
"""Append a condition specific parameter mapping."""
"""Append a condition-specific parameter mapping."""
self.parameter_mappings.append(parameter_mapping_for_condition)

def __repr__(self):
Expand Down Expand Up @@ -307,9 +309,10 @@ def unscale_parameters_dict(

def create_parameter_mapping(
petab_problem: petab.Problem,
simulation_conditions: pd.DataFrame | list[dict],
simulation_conditions: pd.DataFrame | list[dict] | None,
scaled_parameters: bool,
amici_model: AmiciModel | None = None,
fill_fixed_parameters: bool = True,
**parameter_mapping_kwargs,
) -> ParameterMapping:
"""Generate AMICI specific parameter mapping.
Expand All @@ -325,11 +328,14 @@ def create_parameter_mapping(
are assumed to be in linear scale.
:param amici_model:
AMICI model.
:param fill_fixed_parameters:
Whether to fill in nominal values for fixed parameters
(estimate=0 in the parameters table).
To allow changing fixed PEtab problem parameters,
use ``fill_fixed_parameters=False``.
:param parameter_mapping_kwargs:
Optional keyword arguments passed to
:func:`petab.get_optimization_to_simulation_parameter_mapping`.
To allow changing fixed PEtab problem parameters (``estimate=0``),
use ``fill_fixed_parameters=False``.
:return:
List of the parameter mappings.
"""
Expand Down Expand Up @@ -377,6 +383,7 @@ def create_parameter_mapping(
mapping_df=petab_problem.mapping_df,
model=petab_problem.model,
simulation_conditions=simulation_conditions,
fill_fixed_parameters=fill_fixed_parameters,
**dict(
default_parameter_mapping_kwargs, **parameter_mapping_kwargs
),
Expand All @@ -388,7 +395,11 @@ def create_parameter_mapping(
simulation_conditions.iterrows(), prelim_parameter_mapping, strict=True
):
mapping_for_condition = create_parameter_mapping_for_condition(
prelim_mapping_for_condition, condition, petab_problem, amici_model
prelim_mapping_for_condition,
condition,
petab_problem,
amici_model,
fill_fixed_parameters=fill_fixed_parameters,
)
parameter_mapping.append(mapping_for_condition)

Expand All @@ -400,8 +411,9 @@ def create_parameter_mapping_for_condition(
condition: pd.Series | dict,
petab_problem: petab.Problem,
amici_model: AmiciModel | None = None,
fill_fixed_parameters: bool = True,
) -> ParameterMappingForCondition:
"""Generate AMICI specific parameter mapping for condition.
"""Generate AMICI-specific parameter mapping for a PEtab simulation.
:param parameter_mapping_for_condition:
Preliminary parameter mapping for condition.
Expand All @@ -412,10 +424,12 @@ def create_parameter_mapping_for_condition(
Underlying PEtab problem.
:param amici_model:
AMICI model.
:param fill_fixed_parameters:
Whether to fill in nominal values for fixed parameters
(estimate=0 in the parameters table).
:return:
The parameter and parameter scale mappings, for fixed
preequilibration, fixed simulation, and variable simulation
pre-equilibration, fixed simulation, and variable simulation
parameters, and then the respective scalings.
"""
(
Expand All @@ -436,10 +450,10 @@ def create_parameter_mapping_for_condition(
if len(condition_map_preeq) and len(condition_map_preeq) != len(
condition_map_sim
):
logger.debug(f"Preequilibration parameter map: {condition_map_preeq}")
logger.debug(f"Pre-equilibration parameter map: {condition_map_preeq}")
logger.debug(f"Simulation parameter map: {condition_map_sim}")
raise AssertionError(
"Number of parameters for preequilbration "
"Number of parameters for pre-equilbration "
"and simulation do not match."
)

Expand All @@ -451,8 +465,8 @@ def create_parameter_mapping_for_condition(
# During model generation, parameters for initial concentrations and
# respective initial assignments have been created for the
# relevant species, here we add these parameters to the parameter mapping.
# In absence of preequilibration this could also be handled via
# ExpData.x0, but in the case of preequilibration this would not allow for
# In the absence of pre-equilibration this could also be handled via
# ExpData.x0, but in the case of pre-equilibration this would not allow for
# resetting initial states.

if states_in_condition_table := get_states_in_condition_table(
Expand Down Expand Up @@ -485,10 +499,11 @@ def create_parameter_mapping_for_condition(
condition_map_preeq,
condition_scale_map_preeq,
preeq_value,
fill_fixed_parameters=fill_fixed_parameters,
)
# need to set dummy value for preeq parameter anyways, as it
# need to set a dummy value for preeq parameter anyways, as it
# is expected below (set to 0, not nan, because will be
# multiplied with indicator variable in initial assignment)
# multiplied with the indicator variable in initial assignment)
condition_map_sim[init_par_id] = 0.0
condition_scale_map_sim[init_par_id] = LIN

Expand All @@ -503,6 +518,7 @@ def create_parameter_mapping_for_condition(
condition_map_sim,
condition_scale_map_sim,
value,
fill_fixed_parameters=fill_fixed_parameters,
)
# set dummy value as above
if condition_map_preeq:
Expand Down Expand Up @@ -549,11 +565,11 @@ def create_parameter_mapping_for_condition(
condition_scale_map_sim_fix = {}

logger.debug(
"Fixed parameters preequilibration: " f"{condition_map_preeq_fix}"
"Fixed parameters pre-equilibration: " f"{condition_map_preeq_fix}"
)
logger.debug("Fixed parameters simulation: " f"{condition_map_sim_fix}")
logger.debug(
"Variable parameters preequilibration: " f"{condition_map_preeq_var}"
"Variable parameters pre-equilibration: " f"{condition_map_preeq_var}"
)
logger.debug("Variable parameters simulation: " f"{condition_map_sim_var}")

Expand All @@ -579,21 +595,46 @@ def create_parameter_mapping_for_condition(


def _set_initial_state(
petab_problem,
condition_id,
element_id,
init_par_id,
par_map,
scale_map,
value,
):
petab_problem: petab.Problem,
condition_id: str,
element_id: str,
init_par_id: str,
par_map: petab.ParMappingDict,
scale_map: petab.ScaleMappingDict,
value: str | float,
fill_fixed_parameters: bool = True,
) -> None:
"""
Update the initial value for a model entity in the parameter mapping
according to the PEtab conditions table.
:param petab_problem: The PEtab problem
:param condition_id: The current condition ID
:param element_id: Element for which to set the initial value
:param init_par_id: The parameter ID that refers to the initial value
:param par_map: Parameter value mapping
:param scale_map: Parameter scale mapping
:param value: The initial value for `element_id` in `condition_id`
:param fill_fixed_parameters:
Whether to fill in nominal values for fixed parameters
(estimate=0 in the parameters table).
"""
value = petab.to_float_if_float(value)
# NaN indicates that the initial value is to be taken from the model
# (if this is the pre-equilibration condition, or the simulation condition
# when no pre-equilibration condition is set) or is not to be reset
# (if this is the simulation condition following pre-equilibration)-
# The latter is not handled here.
if pd.isna(value):
if petab_problem.model.type_id == MODEL_TYPE_SBML:
value = _get_initial_state_sbml(petab_problem, element_id)
elif petab_problem.model.type_id == MODEL_TYPE_PYSB:
value = _get_initial_state_pysb(petab_problem, element_id)

else:
raise NotImplementedError(
f"Model type {petab_problem.model.type_id} not supported."
)
# the initial value can be a numeric value or a sympy expression
try:
value = float(value)
except (ValueError, TypeError):
Expand All @@ -614,14 +655,24 @@ def _set_initial_state(
f"defined for the condition {condition_id} in "
"the PEtab conditions table. The initial value is "
f"now set to {value}, which is the initial value "
"defined in the SBML model."
"defined in the original model."
)

par_map[init_par_id] = value
if isinstance(value, float):
# numeric initial state
scale_map[init_par_id] = petab.LIN
else:
# parametric initial state
if (
fill_fixed_parameters
and petab_problem.parameter_df is not None
and value in petab_problem.parameter_df.index
and petab_problem.parameter_df.loc[value, ESTIMATE] == 0
):
par_map[init_par_id] = petab_problem.parameter_df.loc[
value, NOMINAL_VALUE
]
scale_map[init_par_id] = petab_problem.parameter_df[
PARAMETER_SCALE
].get(value, petab.LIN)
Expand All @@ -638,7 +689,7 @@ def _subset_dict(
Collections of keys to be contained in the different subsets
:return:
subsetted dictionary
Subsetted dictionary
"""
for keys in args:
yield {key: val for (key, val) in full.items() if key in keys}
Expand All @@ -647,6 +698,11 @@ def _subset_dict(
def _get_initial_state_sbml(
petab_problem: petab.Problem, element_id: str
) -> float | sp.Basic:
"""Get the initial value of an SBML model entity.
Get the initial value of an SBML model entity (species, parameter, ...) as
defined in the model (not considering any condition table overrides).
"""
import libsbml

element = petab_problem.sbml_model.getElementBySId(element_id)
Expand Down Expand Up @@ -688,9 +744,15 @@ def _get_initial_state_sbml(
def _get_initial_state_pysb(
petab_problem: petab.Problem, element_id: str
) -> float | sp.Symbol:
"""Get the initial value of a PySB model entity.
Get the initial value of an PySB model entity as defined in the model
(not considering any condition table overrides).
"""
from pysb.pattern import match_complex_pattern

species_idx = int(re.match(r"__s(\d+)$", element_id)[1])
species_pattern = petab_problem.model.model.species[species_idx]
from pysb.pattern import match_complex_pattern

value = next(
(
Expand Down

0 comments on commit 78026f5

Please sign in to comment.