-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_asr.py
313 lines (285 loc) · 10.6 KB
/
run_asr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import argparse
import logging
import os
import sys
from datetime import datetime
from pathlib import Path
from transformers import AutoModelForCausalLM
import time
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
from tqdm import tqdm
from datasets import load_dataset, Audio
from custom_model.model_wrapper import CustomWhisperForConditionalGeneration
from transformers import set_seed
from evaluate import load as eval_load
set_seed(424242)
def main(cli_args):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
device = "mps" if torch.backends.mps.is_available() else device
torch_dtype = torch.float16 if device != "cpu" else torch.float32
custom_sampling_fn = None
if cli_args.use_custom_sampler:
try:
from torch.utils.cpp_extension import load
custom_sampling_module = load(
name="custom_sampling",
sources=["main.cpp", f"{cli_args.kernel_name}.cu"],
extra_cuda_cflags=["-O2"],
)
logging.info(
f"Built custom sampling extension {custom_sampling_module} {type(custom_sampling_module)}"
)
custom_sampling_fn = custom_sampling_module.sampling_cuda
except Exception as e:
logging.error(e)
logging.info(f"{device=}, {torch_dtype=}, {custom_sampling_fn=}")
dataset = load_dataset(
cli_args.dataset, cli_args.subset, split=cli_args.split, trust_remote_code=True
)
if cli_args.max_samples is not None and cli_args.max_samples > 0:
if cli_args.skip_shuffle:
logging.info(
f"Skipping shuffling and taking first {cli_args.max_samples} samples."
)
dataset = dataset.select(range(min(cli_args.max_samples, len(dataset))))
else:
logging.info(
f"Taking {cli_args.max_samples} random samples from the dataset"
)
# dataset = dataset.select(range(min(cli_args.max_samples, len(dataset))))
dataset = dataset.shuffle(seed=424242).select(
range(min(cli_args.max_samples, len(dataset)))
)
if "common_voice" in cli_args.dataset:
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
if not cli_args.run_hf_default_model:
logging.info("Running custom model class.")
model = CustomWhisperForConditionalGeneration.from_pretrained(
cli_args.model_name,
torch_dtype=torch_dtype,
low_cpu_mem_usage=False,
use_safetensors=True,
attn_implementation="sdpa",
)
else:
logging.info("Running HF default model class.")
if cli_args.use_custom_sampler:
raise ValueError(
"--use_custom_sampler is only available when --run_hf_default_model is not set!"
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
cli_args.model_name,
torch_dtype=torch_dtype,
low_cpu_mem_usage=False,
use_safetensors=True,
attn_implementation="sdpa",
)
model.generation_config.return_dict_in_generate = True
model.to(device)
processor = AutoProcessor.from_pretrained(cli_args.model_name)
assistant_model = AutoModelForCausalLM.from_pretrained(
cli_args.assistant_model_name,
torch_dtype=torch_dtype,
low_cpu_mem_usage=False,
use_safetensors=True,
attn_implementation="sdpa",
)
assistant_model.generation_config.num_assistant_tokens = (
cli_args.num_assistant_tokens
) # default = 5
logging.info(f"{assistant_model.generation_config.num_assistant_tokens=}")
assistant_model.to(device)
model.config.forced_decoder_ids = None
assistant_model.config.forced_decoder_ids = None
def assisted_generate_wrapper(model, inputs, **kwargs):
start_time = time.time()
outputs = model.generate(
**inputs, assistant_model=assistant_model, do_sample=True, **kwargs
)
generation_time = time.time() - start_time
return outputs, generation_time
all_time = 0
predictions = []
references = []
profiling_results = []
profiling_tables = []
for sample in tqdm(dataset):
try:
audio = sample["audio"]
inputs = processor(
audio["array"],
sampling_rate=audio["sampling_rate"],
return_tensors="pt",
)
inputs = inputs.to(device=device, dtype=torch_dtype)
custom_model_kwargs = {}
if not cli_args.run_hf_default_model:
custom_model_kwargs = {
"with_profiling": cli_args.with_profiling,
"custom_speculative_sampler": custom_sampling_fn,
}
output, gen_time = assisted_generate_wrapper(
model, inputs, **custom_model_kwargs
)
all_time += gen_time
predictions.append(
processor.batch_decode(
output.sequences, skip_special_tokens=True, normalize=True
)[0]
)
references.append(
processor.tokenizer._normalize(sample[cli_args.text_column])
)
profiling_results.append(output.profiling_results)
profiling_tables.append(output.profiling_table)
except Exception as e:
logging.error(f"{custom_sampling_fn=} ({cli_args.dataset}): {e}")
peak_mem = 0
try:
peak_mem = torch.cuda.max_memory_allocated()
except Exception as e:
logging.error(f"Unable to extract peak memory statistics! {e}")
metrics = eval_load("wer")
def clean_for_wer_metric(preds, refs):
pred_results = []
ref_results = []
for p, r in zip(preds, refs):
if len(p) < 1 or len(r) < 1:
logging.warning(
f"Found empty string for prediction '{p}' and reference '{r}'!"
)
continue
pred_results.append(p)
ref_results.append(r)
return pred_results, ref_results
predictions_clean, references_clean = clean_for_wer_metric(predictions, references)
wer = metrics.compute(predictions=predictions_clean, references=references_clean)
logging.info(f"WER: {wer}")
logging.info(f"Predictions: {predictions[:3]}")
logging.info(f"References: {references[:3]}")
logging.info(f"Wall Time: {all_time}s")
if cli_args.with_profiling:
logging.info("Last profiling table:")
logging.info(profiling_tables[-1][-1])
custom_kernel_name = (
"hf_sampler" if custom_sampling_fn is None else f"{cli_args.kernel_name}"
)
time_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
profiler_path = os.path.join(
"profiler", "asr", cli_args.dataset.replace("/", "-"), cli_args.subset
)
target_model = cli_args.model_name.replace("/", "-").replace(".", "-")
assistant_model = cli_args.assistant_model_name.replace("/", "-").replace(
".", "-"
)
Path(profiler_path).mkdir(exist_ok=True, parents=True)
out_file = os.path.join(
profiler_path,
f"{custom_kernel_name}_tgt_{target_model}_ass_{assistant_model}_{cli_args.split}_{cli_args.output_suffix}{time_str}.csv",
)
with open(out_file, "w") as tf:
tf.write(
"example,cuda_time_total,cpu_time_total,self_cuda_time_total,self_cpu_time_total,candidate_length,n_matches\n"
)
for ex, prof_results in enumerate(profiling_results):
for line in prof_results:
tf.write(f"{ex},{line}\n")
out_file = os.path.join(
profiler_path,
f"wall_time_total_{custom_kernel_name}_tgt_{target_model}_ass_{assistant_model}_{cli_args.split}_{cli_args.output_suffix}{time_str}.csv",
)
with open(out_file, "w") as tf:
tf.write("wall_time,wer,peak_mem_bytes\n")
tf.write(f"{all_time},{wer},{peak_mem}\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--use_custom_sampler",
action="store_true",
help="Use custom cuda kernel for speculative sampling",
)
parser.add_argument(
"--run_hf_default_model",
action="store_true",
help="Use Huggingface default model class for experiment",
)
parser.add_argument(
"--with_profiling",
action="store_true",
help="Use torch profiler to profile _speculative_sampling",
)
parser.add_argument(
"--skip_shuffle",
action="store_true",
help="Don't shuffle",
)
parser.add_argument(
"--num_assistant_tokens",
type=int,
default=5,
help="Number of tokens generated via the assistant model",
)
parser.add_argument(
"--kernel_name",
type=str,
default="speculative_hf_half",
help="Number of tokens generated via the assistant model",
)
parser.add_argument(
"--dataset",
type=str,
default="librispeech_asr",
help="Dataset i.e. the 'path' parameter in load_dataset",
)
parser.add_argument(
"--subset",
type=str,
default="clean",
help="Subset i.e. the 'name' parameter in load_dataset",
)
parser.add_argument(
"--split",
type=str,
default="test",
help="Train/test/validation split",
)
parser.add_argument(
"--text_column",
type=str,
default="text",
help="Dataset column that contains the references. Needed for WER computation.",
)
parser.add_argument(
"--model_name",
type=str,
default="openai/whisper-small.en",
help="Target model name",
)
parser.add_argument(
"--assistant_model_name",
type=str,
default="distil-whisper/distil-small.en",
help="Smaller assistant model name",
)
parser.add_argument(
"--output_suffix",
type=str,
default="",
help="Name that can be appended to the output csv",
)
parser.add_argument(
"--max_samples",
type=int,
default=None,
help="Maximum number of samples to take from the test set",
)
args = parser.parse_args()
formatter = "[%(levelname)s|%(filename)s:%(lineno)d] %(asctime)s >> %(message)s"
logging.basicConfig(
format=formatter,
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
level=logging.INFO,
)
main(args)