-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcontroller.py
1281 lines (1074 loc) · 64.7 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
import numpy as np
import torch.nn as nn
import os
import sys
import copy
import threading
import pickle
import logging
import numpy as np
from pprint import pformat
import utils
import plotting
import argparse
from batch_systems import *
from load_models import load_model
# from dataloader.data_loaders import load_data
from utils import set_seeds, get_batch, parse_profile
from utils import get_queuing_delay, get_ramp_latencies, get_remaining_rate
from utils import serve_batch, tune_threshold, earlyexit_inference, get_optimal_exitable_ramps
from utils import earlyexit_infer_per_sample, get_batch_perf, get_overall_exit_info, get_ramp_scores, get_ramp_utility
from utils import ramp_addition, ramp_pruning, ramp_pruning_garbage_only, ramp_addition_tail_latency
sys.path.insert(1, os.path.join(os.getcwd(), 'profiling')) # for loading profile pickles
# from profiler import TIDSProfiler
# suppress matplotlib font manager logger
logging.getLogger('matplotlib.font_manager').disabled = True
# format string for logging
LOG_FORMAT = '%(asctime)s [%(name)s:%(levelname)s] %(message)s'
DATE_FORMAT = '%Y-%m-%d %H:%M:%S'
# utility threshold for pruning. our system is not sensitive to this
# hyperparameter, but we set it to 0.1 instead of 0 to prevent noise.
PRUNE_THRESHOLD = 0.1 # -0.05
# max accuracy loss (compared to the original model output) we can afford
ACC_LOSS_BUDGET_ACTUAL = 0.01 # 1.5% acc loss
# max accuracy loss (compared to the original model output) we can afford
# when doing threshold tuning (0.5% slack)
ACC_LOSS_BUDGET_TUNING = 0.0001 # 1% acc loss
# max tail latency degradation (compared to the original model tail latency) we can afford
TAIL_LATENCY_BUDGET = 0.05
RAMP_CHECK_INTERVAL = 30
NUM_RAMP_BUDGET = 3
class Controller():
def __init__(self, args, log_level="INFO"):
# pytorch model instance (?)
self._model = None
# latency/memory profile of the model with all exits enabled
# NOTE(ruipan): for now, all profiles assume batch size bs=1
self._model_profile = None
# key: batch size ranging from 1 to 64. each item is a
# list of tuples for easier querying of early exit latencies.
# index x: (latency of vanilla model up to ramp x, latency of ramp x).
# last entry: (latency of vanilla model, None).
self._latency_calc_list = {}
# key: layer name, value: output shape
self._layer_output_size = {}
# keeps a queue of incoming serving requests
self._requests_queue = None
# current early-exit configuration
self._ramp_ids = None # list of 0-indexed sorted ramp IDs
self._shadow_ramp_id = None # set of shadow ramp IDs
self._shadow_ramp_idx = None # index of shadow ramp in ramp_ids
self._shadow_ramp_num_ = 0 # number of good sample batches for shadow ramp
self._thresholds = None # list of exit thresholds associated with each ramp
# entropies ("conf") / predictions ("acc") of past data, each of which is a
# list (len: num ramps + 1) of lists (len: num samples)
self._historical_data = None
self._historical_exit_rates = None
self._historical_ramp_utility = None
# whether to use pre-computed entropies (stored in pickle files) during serving
self._simulate = False
# seed things just in case
set_seeds()
# configure logger
self._logger = logging.getLogger(__name__)
logging_level_dict = {"INFO": logging.INFO, "DEBUG": logging.DEBUG}
self._logger.setLevel(logging_level_dict[log_level])
# overwrite previous output log file
# ch = logging.FileHandler(f"../logs/{args.model}_{args.dataset}.log", mode="w+")
# ch.setFormatter(logging.Formatter(fmt=LOG_FORMAT, datefmt=DATE_FORMAT))
# self._logger.addHandler(ch)
ch = logging.FileHandler(
f"./logs/output_{args.arch}_{args.dataset}.log", mode="w+")
ch.setFormatter(logging.Formatter(fmt=LOG_FORMAT, datefmt=DATE_FORMAT))
self._logger.addHandler(ch)
self._logger.debug(f"Logger set up!")
self._logger.info(f"args: {args}")
# multiprocessing lock
self._lock = threading.Lock()
# temporary code for testing
self._args = args
self._dataloader = None
self._latest_deactivated_ramp = None
self._recovery_mode = False
self._last_violation_idx = None
self._device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
self.nlp = False
if self._args.dataset != "video":
self.nlp = True
global NUM_RAMP_BUDGET
global RAMP_CHECK_INTERVAL
NUM_RAMP_BUDGET = 2
RAMP_CHECK_INTERVAL = 100
def get_batch_decision(self):
"""
Get batch decision from batch decision pickle file or generate batch decision
"""
if os.path.exists(self._args.batch_decision_path):
print(f"self._args.batch_decision_path: {self._args.batch_decision_path}")
with open(self._args.batch_decision_path, "rb") as f:
self._batch_info = pickle.load(f)
self._batch_decision = self._batch_info['batching_decision']
else:
assert os.path.exists(self._args.batch_decision_path), f"batch decision path {self._args.batch_decision_path} does not exist"
def plot_latency_cdfs(self):
per_request_stats = self._batch_info["per_request_stats"]
total_num_requests = self._batch_info["total_num_requests"]
batching_scheme = self._batch_info["batching_scheme"]
arch = self._batch_info["arch"]
slo = self._batch_info["slo"]
avg_qps = self._batch_info["avg_qps"]
total_time = self._batch_info["end_time"]
batch_decision = self._batch_info["batching_decision"]
vanilla_median, apparate_median, apparate_optimal_median = \
get_latency_plots(self._args.dataset, True, batching_scheme, arch, slo, avg_qps, \
per_request_stats, total_num_requests, total_time, 1/self._args.qps, batch_decision, self._all_vanilla_latencies)
self._logger.info(f"apparate median savings {(vanilla_median - apparate_median) / vanilla_median }" )
def bootstrap(self, generate_pickle=False):
"""Set up the training environment for model dataset pair
Assume if latency profile is found
model is already trained and entropy profile is generated
if latency profile is found
1. Load the entropy pickle file and latency profile
else
1. Load the vanilla model and inject ramps.
2. Train all the ramps dump the model and generate entropy pickle file and latency profile
ramp addition: generate initial ramp ids and thresholds
Load the model with the ramp ids and set the thresholds
"""
"""TODO(ruipan):
load the model with all exits, run dataset through the model, and record
the entropies of all samples at all ramps in a pickle file.
Later, ramp_addition is done on this pickle file in simulation (w/o having
to actually serve the model).
"""
for batch_size in utils.supported_batch_sizes:
if self._args.dataset == 'video':
profile_path = os.path.join(
"../", self._args.profile_dir, f"{self._args.arch.split('_')[0]}_{batch_size}_earlyexit_profile.pickle")
else:
profile_path = os.path.join(
"../", self._args.profile_dir, f"{self._args.arch}_{batch_size}_earlyexit_profile.pickle")
if os.path.exists(profile_path):
with open(profile_path, 'rb') as f:
profile = pickle.load(f)
if not any([x in self._args.arch for x in ["vgg", "resnet"]]):
self._latency_calc_list[batch_size] = parse_profile(profile)
else: # NOTE(ruipan): all cv models' branched_module latencies aren't properly recorded.
# workaround: load vanilla model profile for vanilla model's runtime, and manually add
# the ramps' overheads
"""
latency_calc_list format: list of tuples. for each ramp, the tuple is
(vanilla_latency_before_ramp, ramp_latency,). In addition,
(vanilla_model_latency, None,) is appended to latency_calc_list.
"""
latency_calc_list = []
vanilla_profile_path = profile_path.replace(f"_earlyexit", '')
# vanilla_profile_path = os.path.join("./profile_pickles_bs", f"{self._args.arch.split('_')[0]}_{batch_size}_profile.pickle")
with open(vanilla_profile_path, "rb") as f:
vanilla_profile = pickle.load(f)
# print(f"vanilla_profile_path {vanilla_profile_path}")
"""
Traverse through all named modules in vanilla_profile.
for every full name, check if the corresponding module in the ee profile
is a BranchPoint. If so, add to latency_calc_list.
"""
all_childrens_fullname = vanilla_profile.get_all_childrens_fullname()
# print(f"all_childrens_fullname {all_childrens_fullname}")
for child_fullname in all_childrens_fullname:
module_in_ee = profile.get_child_with_name(child_fullname.split('.')) # module with same name in ee profile
if module_in_ee is not None:
if module_in_ee.type == "BranchPoint":
# print(f"child_fullname {child_fullname}, found twin module in ee with name {module_in_ee.full_name} that's a r=branchpoint")
module_in_vanilla = vanilla_profile.get_child_with_name(child_fullname.split('.'))
assert module_in_vanilla.full_name == module_in_ee.full_name
latency_calc_list.append((
module_in_vanilla.vanilla_latency_up_until_me,
module_in_ee.get_child_with_name(["branch_net"]).fwd_latency,
))
latency_calc_list.append((vanilla_profile.fwd_latency_orig, None,))
# print(f"latency_calc_list {latency_calc_list}")
self._latency_calc_list[batch_size] = latency_calc_list
else:
raise Exception(
f"No profile found for model {self._args.arch} at {profile_path}!")
self._batch_decision = None
if self._args.batching_scheme != 'uniform':
self.get_batch_decision()
if generate_pickle: # activate all ramps
self._total_num_ramps = len(entropy_dict['conf'])
self._ramp_ids = list(range(self._total_num_ramps - 1))
self._thresholds = [0.0] * len(self._ramp_ids)
elif self._args.bootstrap_pickle_path is None:
self._total_num_ramps = 13
self._ramp_quota = 0
self._latest_possible_ramp = self.get_boundary(latency_calc_list=self._latency_calc_list[self._args.batch_size])
self._ramp_ids = [5, 8]
self._thresholds = [1.0, 1.0]
else:
with open(self._args.bootstrap_pickle_path, 'rb') as f:
entropy_dict = pickle.load(f)
self._ramp_ids, self._thresholds, latency_savings, acc, exit_rate, (self._ramp_efficacy_order, ramp_efficacies) = ramp_addition_tail_latency(
entropy_dict,
latency_calc_list=self._latency_calc_list[self._args.batch_size],
# latency_calc_list=self._latency_calc_list[16],
num_ramp_budget= 1 if ('resnet18' in self._args.arch or 'vgg' in self._args.arch) else NUM_RAMP_BUDGET,
# num_ramp_budget=1,
acc_loss_budget=ACC_LOSS_BUDGET_TUNING,
tail_latency_budget= 0.05 if ('resnet18' in self._args.arch or 'vgg' in self._args.arch) else TAIL_LATENCY_BUDGET
)
# print(self._latency_calc_list[self._args.batch_size])
# exit()
# overhead = 0.0
# vanila_latency = self._latency_calc_list[self._args.batch_size][-1][0]
# for ramp_id in self._ramp_ids:
# overhead += self._latency_calc_list[self._args.batch_size][ramp_id][1]
# self._logger.info(
# f"bootstrap: ramp addition with tail latency optimization done, ramp ids: {self._ramp_ids}, thresholds: {self._thresholds}")
# self._logger.info(
# f"expected latency savings: {latency_savings}, expected acc: {acc}, exit rate: {exit_rate} tail latency {overhead / vanila_latency * 100}% worse")
# # # NOTE: considers vanilla model as a ramp
self._total_num_ramps = len(entropy_dict['conf'])
# self._logger.info(
# f"bootstrap: total number of ramps: {self._total_num_ramps}")
# # (ID of first ramp, its associated exit rate), for checking the signal for ramp location changes
# self._prev_avg_exit_rate_info = (
# min(self._ramp_ids), exit_rate)
# self._ramp_avg_confidence = [np.average(entropy_dict['conf'][ramp_id]) for ramp_id in self._ramp_ids]
# self._logger.info(f"average ramp confidence {self._ramp_avg_confidence}")
# self._logger.info(
# f"ramp efficacy order {self._ramp_efficacy_order}, ramp efficacies {ramp_efficacies}")
# optimal_exitable_ramps = \
# get_optimal_exitable_ramps(entropy_dict, [i for i in range(self._total_num_ramps)], self._total_num_ramps)
# ramp_ids = self._ramp_ids
# ramp_acc = [1 - np.mean(entropy_dict['acc'][i]) for i in range(self._total_num_ramps - 1)]
# _ = utils.get_shadow_ramp_order(optimal_exitable_ramps, ramp_ids, self._total_num_ramps, self._latency_calc_list[self._args.batch_size], ramp_acc)
self._latest_possible_ramp = self.get_boundary(latency_calc_list=self._latency_calc_list[self._args.batch_size])
print(f"self._latest_possible_ramp: {self._latest_possible_ramp}")
if self._ramp_ids is None:
self._ramp_ids = self.get_new_ramps(0, self._latest_possible_ramp, 1)
self._thresholds = [0.0]*len(self._ramp_ids)
else:
l = len(self._ramp_ids)
self._ramp_ids = self.get_new_ramps(0, self._latest_possible_ramp, l)
self._thresholds = [0.0]*len(self._ramp_ids)
self._ramp_quota = 0
print(self._ramp_ids)
print(self._latency_calc_list[1])
if self._args.optimal_exiting:
self._ramp_ids = list(range(self._total_num_ramps - 1))
self._thresholds = [0.0] * len(self._ramp_ids)
self._historical_data = {'conf': [[] for _ in range(self._total_num_ramps)],
'acc': [[] for _ in range(self._total_num_ramps)]}
self._batch_idx = 0
self._last_latency_improvement = 0.0
self._curr_latency_improvement = 0.0
self._after_ramp_adjustment = False
self._postive_threshold = 0.6
self._negative_threshold = 0.6
self._historical_data_size = 4
self._historical_data = {'conf': [[] for _ in range(self._total_num_ramps)],
'acc': [[] for _ in range(self._total_num_ramps)]}
self._batch_size_info = []
self.set_meta_data()
self._violation_counter = 0
if not self._simulate:
# self._model is an EarlyExitModel wrap up of the vanilla model
self._model, self._tokenizer, self._all_exit_def = \
load_model(self._args.dataset, self._args.arch,
self._args.model_dir, self._args.num_classes,
self._args.pretrained, self._args.earlyexit)
# now inject the ramps into the model together with pretrained ramp weights
self._model.activate_ramps(self._ramp_ids, self._all_exit_def)
self._ramp_history = []
self._ramp_history.append(self._ramp_ids)
def get_boundary(self, latency_calc_list):
"""
get the latest possible ramp location
Args:
latency_calc_list (list): a list of latency calculation results
"""
latest_ramp = 0
for i in range(self._total_num_ramps - 1):
latency_config, baseline_latency = get_ramp_latencies(
[i], latency_calc_list)
if latency_config[0] > baseline_latency:
break
latest_ramp = i
return latest_ramp
def set_meta_data(self):
"""
initialize the meta data of the model e.g. historical data
"""
self._historical_exit_rates = []
self._historical_ramp_utility = [[]
for _ in range(self._total_num_ramps)]
self._acc_violation_info = []
self._last_latency_improvement = 0.0
self._curr_latency_improvement = 0.0
self._good_count = 0
self._bad_count = 0
def clear_meta_data(self, ramp_id):
"""
clear historical data of a given ramp
Args:
ramp_id (int): ramp id
"""
for key, _ in self._historical_data.items():
self._historical_data[key][ramp_id] = []
self._historical_ramp_utility[ramp_id] = []
def setup_serving(self):
"""Set up the serving environment for model dataset pair
"""
if not self._simulate:
# # 1. Load the model
# self._model, tokenizer = load_model(self._args.dataset, self._args.arch, \
# self._args.model_dir, self._args.pretrained, \
# self._ramp_ids, self._args.earlyexit)
self._model.eval()
# 2. Load the dataset
_, self._dataloader = \
load_data(self._args.dataset, self._args.data_dir,
self._args.batch_size, self._args.arch, test_only=True, tokenizer=self._tokenizer)
else:
if self._args.simulation_pickle_path is not None: # TODO: remove hardcode
pickle_path = self._args.simulation_pickle_path
else:
raise ValueError(f"simulation pickle path is not provided")
# pickle_path = f"../{self._args.dataset}_{self._args.arch}_entropies.pickle"
# pickle_path = os.path.join(os.getenv("HOME"), f"{self._args.dataset}_{self._args.arch}_entropies.pickle")
with open(pickle_path, "rb") as f:
entropy_dict = pickle.load(f)
self._dataloader = utils.get_batches(
entropy_dict, batch_size=self._args.batch_size)
def get_batch(self, batch_size):
"""Get a batch of data from the queue
Args:
batch_size (int): number of requests to get from the queue
Returns:
tensor: batch of data
batch_size (int): number of requests in the batch
"""
pass
def get_new_ramps(self, left, right, num):
"""Get a list of new ramp ids
Args:
left (int): left index of the ramp
right (int): right index of the ramp
num (int): number of new ramps to get
Returns:
list: list of new ramp ids
"""
return list(np.linspace(left, right, num=num+2, dtype=int))[1:-1]
def serve(self, simulate: bool = False, store_entropy_pickle: bool = False):
"""Serve a batch of requests
Args:
simulate (bool): use pre-computed entropies stored in pickle files
FIXME(ruipan): simulation/physical mismatch
store_entropy_pickle (bool): stores the entropies of all data
at all ramps in a pickle file. Defaults to false.
Returns:
tensor: batch of predictions
"""
"""
While True:
1. Aquire lock Check if there is a new config
2. Serve the batch
3. Update the historical data
4. Check signals
"""
self._simulate = simulate
self._store_entropy_pickle = store_entropy_pickle
# for plotting
self._all_latencies = []
self._all_accuracies = []
self._all_exit_ramp = []
self._all_vanilla_latencies = []
self._threshold_tuning_history = []
self.bootstrap(store_entropy_pickle)
if store_entropy_pickle:
# assert self._args.bootstrap_pickle_path is None, f"Trying to generate an entropy pickle, but also using that entropy pickle for bootstrapping..."
entropy_dict = {'conf': [[] for _ in range(self._total_num_ramps)],
'acc': [[] for _ in range(self._total_num_ramps)]}
online_configs = []
self.setup_serving()
configs = []
# with open(f"../{self._args.dataset}_{self._args.arch}_entropies.pickle", 'rb') as f:
# debug_entropy_dict = pickle.load(f)
# debug_entropy_loader = get_batch(debug_entropy_dict, self._args.batch_size)
with torch.no_grad():
# for inputs in self._dataloader
curr_data = None
i = 0
self._dataloader = iter(self._dataloader)
while True:
if self._batch_decision is None or self._store_entropy_pickle:
curr_data = next(self._dataloader, None)
if curr_data is None:
break
i += 1
inputs = curr_data
else:
if i >= len(self._batch_decision):
break
curr_batch_size = self._batch_decision[i]
if not self._simulate:
if curr_data is None or curr_data[0].shape[0] <= curr_batch_size:
load = True
else:
load = False
if load:
try :
next_data = next(self._dataloader)
except StopIteration:
self.setup_serving()
self._dataloader = iter(self._dataloader)
next_data = next(self._dataloader)
if curr_data is None:
curr_data = next_data
else:
for j in range(len(curr_data)):
curr_data[j] = torch.cat((curr_data[j], next_data[j]), dim=0)
if curr_data[0].shape[0] < curr_batch_size:
continue
elif curr_data[0].shape[0] == curr_batch_size:
inputs = curr_data
curr_data = None
i += 1
else:
inputs = [None] * len(curr_data)
indices = torch.tensor(range(0, curr_batch_size))
indices_left = torch.tensor(range(curr_batch_size, curr_data[0].shape[0]))
for j in range(len(curr_data)):
inputs[j] = torch.index_select(curr_data[j], 0, indices)
curr_data[j] = torch.index_select(curr_data[j], 0, indices_left)
i += 1
else:
if curr_data is None or len(curr_data['conf'][0]) < curr_batch_size:
load = True
else:
load = False
if load:
try :
next_data = next(self._dataloader)
except StopIteration:
break
self.setup_serving()
self._dataloader = iter(self._dataloader)
next_data = next(self._dataloader)
if curr_data is None:
curr_data = next_data
else:
for key, _ in curr_data.items():
for ramp_id in range(self._total_num_ramps - 1):
curr_data[key][ramp_id] += next_data[key][ramp_id]
if len(curr_data['conf'][0]) < curr_batch_size:
continue
elif len(curr_data['conf'][0]) == curr_batch_size:
inputs = curr_data
curr_data = None
i += 1
else:
inputs = {'conf': [[] for _ in range(self._total_num_ramps)],
'acc': [[] for _ in range(self._total_num_ramps)]}
for key, _ in inputs.items():
for ramp_id in range(self._total_num_ramps - 1):
inputs[key][ramp_id] = curr_data[key][ramp_id][:curr_batch_size]
curr_data[key][ramp_id] = curr_data[key][ramp_id][curr_batch_size:]
i += 1
self._lock.acquire()
if not self._simulate:
if len(inputs) == 2: # CV
inputs = inputs[0]
inputs = inputs.to(self._device)
x, ee_outputs = self._model(inputs)
output = ee_outputs + [x]
_, target = output[-1].clone().detach().max(dim=1)
elif len(inputs) == 4: # NLP
batch = inputs
batch = tuple(t.to(self._device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3]
}
if "distilbert" not in self._args.arch:
inputs["token_type_ids"] = (
batch[2] if self._args.arch in [
"bert-base-uncased", "bert-large-uncased", "xlnet"] else None
) # XLM, DistilBERT and RoBERTa don't use segment_ids
# x is a tuple of length 8, containing outputs (e.g., loss, logits, ...) of deebert
# ee_outputs: list of length num_ramps, each of which is the output stored in each branchpoint:
# (logits, pooled_output). Logits can be processed to obtain preds or entropies.
# logits: tensor of torch.Size([batch_size, num_labels])
# print(f"inputs {inputs}")
x, ee_outputs = self._model(**inputs)
# extract logits from (logits, pooled_output) so that we can directly run softmax on the logits
output = [ee_output[0].detach().cpu()
for ee_output in ee_outputs] + [x[1].detach().cpu()]
# NOTE(ruipan): this assumes classification workloads. if regression, use something like np.squeeze
# FIXME(ruipan): target is wrong for some datasets (bert-base: rte and mrpc wrong, but sst-2 is correct)
_, target = output[-1].max(dim=1)
# print(f"output {output}, target {target}")
else:
raise NotImplementedError
request_rate = 240
batch_size = len(inputs["conf"][0]) if self._simulate else target.size(0)
queuing_delay = get_queuing_delay(request_rate, batch_size)
batch_size = utils.round_up_batch_size(batch_size)
ramp_latencies, vanilla_latency = get_ramp_latencies(
self._ramp_ids, self._latency_calc_list[batch_size])
apparate_optimal = False
if not self._simulate:
batch_meta_data, sample_latencies, sample_acc, sample_exit_points = \
earlyexit_infer_per_sample(output, target, self._ramp_ids,
self._thresholds, self._total_num_ramps,
queuing_delay, ramp_latencies, optimal=self._args.optimal_exiting)
elif apparate_optimal:
thresholds_new, latency_improvement_new, exit_rate, acc = \
tune_threshold(self._ramp_ids, self._shadow_ramp_idx, inputs, acc_loss_budget=ACC_LOSS_BUDGET_TUNING, latency_calc_list=self._latency_calc_list[batch_size])
# self._ramp_ids, self._thresholds, latency_savings, acc, exit_rate, _ = ramp_addition_tail_latency(
# inputs,
# latency_calc_list=self._latency_calc_list[self._args.batch_size],
# num_ramp_budget=5,
# acc_loss_budget=ACC_LOSS_BUDGET_TUNING,
# tail_latency_budget=TAIL_LATENCY_BUDGET
# )
# ramp_latencies, vanilla_latency = get_ramp_latencies(
# self._ramp_ids, self._latency_calc_list[batch_size])
batch_meta_data, sample_latencies, sample_acc, sample_exit_points = \
earlyexit_infer_per_sample(None, None, self._ramp_ids,
self._thresholds, self._total_num_ramps,
queuing_delay, ramp_latencies, optimal=self._args.optimal_exiting,
simulated_pickle=inputs)
acc, latency_improvement_old, exit_rate = \
get_batch_perf(sample_latencies, sample_acc, sample_exit_points,
vanilla_latency, self._ramp_ids, self._total_num_ramps)
if latency_improvement_new - latency_improvement_old > 2.0 or acc < 1 - ACC_LOSS_BUDGET_ACTUAL:
self._thresholds = thresholds_new
self._logger.info(f"should change! latency_improvement_new {latency_improvement_new}, latency_improvement_old {latency_improvement_old}, acc {acc}")
if acc < 1 - ACC_LOSS_BUDGET_ACTUAL:
self._thresholds = thresholds_new
self._logger.info("must change!")
if i > 1:
thresholds_tune, latency_improvement_tune, exit_rate, acc = \
tune_threshold(self._ramp_ids, self._shadow_ramp_idx, self._historical_data, acc_loss_budget=ACC_LOSS_BUDGET_TUNING, latency_calc_list=self._latency_calc_list[batch_size])
acc, latency_improvement_tune, exit_rate = \
get_batch_perf(sample_latencies, sample_acc, sample_exit_points,
vanilla_latency, self._ramp_ids, self._total_num_ramps)
batch_meta_data_1, sample_latencies_1, sample_acc_1, sample_exit_points_1 = \
earlyexit_infer_per_sample(None, None, self._ramp_ids,
thresholds_tune, self._total_num_ramps,
queuing_delay, ramp_latencies, optimal=self._args.optimal_exiting,
simulated_pickle=inputs)
acc_tune, latency_improvement_tune, exit_rate = \
get_batch_perf(sample_latencies_1, sample_acc_1, sample_exit_points_1,
vanilla_latency, self._ramp_ids, self._total_num_ramps)
if acc_tune > 1 - ACC_LOSS_BUDGET_ACTUAL:
self._logger.info("can be improve!, {}".format(acc_tune))
else:
# self._thresholds, latency_improvement, exit_rate, acc = \
# tune_threshold(self._ramp_ids, self._shadow_ramp_idx, inputs, acc_loss_budget=ACC_LOSS_BUDGET_TUNING, latency_calc_list=self._latency_calc_list[batch_size])
# self._ramp_ids_new, self._thresholds_new, latency_improvement_new, acc, exit_rate, _ = ramp_addition_tail_latency(
# inputs,
# latency_calc_list=self._latency_calc_list[self._args.batch_size],
# num_ramp_budget=NUM_RAMP_BUDGET,
# acc_loss_budget=ACC_LOSS_BUDGET_TUNING,
# tail_latency_budget=TAIL_LATENCY_BUDGET
# )
# self._logger.info("optimal: batch {}, ramp_ids {}, thresholds {}, actual acc {}, latency_improvement {}, exit_rate {}"
# .format(i, self._ramp_ids_new, self._thresholds_new, acc, latency_improvement_new, exit_rate))
# if self._ramp_ids_new is not None and latency_improvement_new - latency_improvement > 0.0:
# self._ramp_ids = self._ramp_ids_new
# self._thresholds = self._thresholds_new
# ramp_latencies, vanilla_latency = get_ramp_latencies(
# self._ramp_ids, self._latency_calc_list[batch_size])
batch_meta_data, sample_latencies, sample_acc, sample_exit_points = \
earlyexit_infer_per_sample(None, None, self._ramp_ids,
self._thresholds, self._total_num_ramps,
queuing_delay, ramp_latencies, optimal=self._args.optimal_exiting,
simulated_pickle=inputs)
if self._args.optimal_exiting:
sample_latencies = [(s[0], min(s[1], vanilla_latency)) for s in sample_latencies]
if self._recovery_mode == True:
self._all_latencies += [(p[0], vanilla_latency) for p in sample_latencies]
else:
self._all_latencies += sample_latencies
# self._logger.info(f"{self._all_latencies[-1]}, {self._recovery_mode}, {sample_latencies}")
self._all_accuracies += sample_acc
self._all_exit_ramp += sample_exit_points
self._all_vanilla_latencies += [vanilla_latency] * len(sample_latencies)
if store_entropy_pickle:
for ramp_id in range(self._total_num_ramps):
entropy_dict["conf"][ramp_id] += batch_meta_data["conf"][ramp_id]
entropy_dict["acc"][ramp_id] += batch_meta_data["acc"][ramp_id]
# print(f"batch_meta_data['conf'][ramp_id] {batch_meta_data['conf'][ramp_id]}")
acc, latency_improvement, exit_rate = \
get_batch_perf(sample_latencies, sample_acc, sample_exit_points,
vanilla_latency, self._ramp_ids, self._total_num_ramps)
self._acc_violation_info.append(
[acc < 1 - ACC_LOSS_BUDGET_ACTUAL, acc, batch_size])
if self._acc_violation_info[-1][0]:
self._violation_counter += 1
# print(self._acc_violation_info[-1])
_, curr_ramp_acc = get_overall_exit_info(
sample_exit_points, sample_acc)
self._curr_ramp_acc = curr_ramp_acc
self._logger.info("serve_batch: batch {}, current bs {}, ramp_ids {}, thresholds {}, actual acc {}, latency_improvement {}, exit_rate {}, ramp acc {}"
.format(i, batch_size, self._ramp_ids, self._thresholds, acc, latency_improvement if not self._recovery_mode else 0.0 , exit_rate, curr_ramp_acc))
if not store_entropy_pickle:
# 3. Update the historical data
self.update_historical_data(
batch_meta_data, exit_rate, len(inputs["conf"][0]) if self._simulate else target.size(0), latency_improvement)
# 4. Check signals
if self.nlp:
is_threshold_tuned, is_ramp_adjusted = self.check_signals_nlp(i, batch_size)
else:
is_threshold_tuned, is_ramp_adjusted = self.check_signals_cv(i, batch_size)
if i % RAMP_CHECK_INTERVAL == 0:
self._ramp_history.append(self._ramp_ids)
self._threshold_tuning_history.append(is_threshold_tuned)
self._batch_idx += 1
self._lock.release()
if store_entropy_pickle:
# with open(f"./entropy_pickles/{self._args.dataset}_{self._args.arch}_entropies.pickle", "wb") as f:
with open(f"../{self._args.dataset}_{self._args.arch}.pickle", "wb") as f:
pickle.dump(entropy_dict, f)
# plotting.plot_latency_cdf(
# self._all_latencies, vanilla_latency=vanilla_latency)
overall_accuracy = 100 * \
(sum(self._all_accuracies) / len(self._all_accuracies))
all_serving_latencies = [l[1] for l in self._all_latencies]
# print(np.array([l for l in all_serving_latencies]).mean())
if self._args.batch_decision_path is not None:
if not self._args.optimal_exiting:
if self.nlp:
path = f"../apparate_latency/{self._args.arch}_{self._args.dataset}_azure.pickle"
with open(path, "wb") as f:
pickle.dump(all_serving_latencies, f)
else:
path = f"../apparate_latency/{self._args.arch}_{self._args.dataset}_{int(self._args.slo)}_fixed_{int(self._args.qps)}.pickle"
with open(path, "wb") as f:
pickle.dump(all_serving_latencies, f)
else:
path = f"../optimal_latency/{self._args.arch}_{self._args.dataset}_{int(self._args.slo)}_fixed_{int(self._args.qps)}_optimal.pickle"
with open(path, "wb") as f:
pickle.dump(all_serving_latencies, f)
overall_exit_rate, overall_exit_accuracy = get_overall_exit_info(
self._all_exit_ramp, self._all_accuracies)
all_serving_latencies = np.array(all_serving_latencies)
self._all_vanilla_latencies = np.array(self._all_vanilla_latencies)
average_latency_improvement = 100 * np.mean((self._all_vanilla_latencies - all_serving_latencies) / self._all_vanilla_latencies)
# if self.nlp:
# self.plot_latency_cdfs()
self._logger.info(
f"[{self._args.arch}, {self._args.dataset}]: Serving with complete, overall accuracy {overall_accuracy}%, "
f"overall serving latency improvement {average_latency_improvement}%, "
f"overall exit rate {overall_exit_rate}, overall ramp accuracy {overall_exit_accuracy}")
def update_historical_data(self, data, exit_rate, batch_size, latency_improvement):
"""Update historical data
Args:
data (tensor): batch of entropy data
exit_rate (np.ndarray): index x: samples exited at xth ramp,
normalized to 1.0. Last position: samples exited at the
end of vanilla model, also normalized.
batch_size (int): number of requests in the current batch
latency_improvement (float): latency improvement of the current batch
"""
assert len(self._ramp_ids) > 0, "No ramp enabled"
self._curr_ramp_avg_confidence = [np.average(data['conf'][ramp_id]) for ramp_id in self._ramp_ids]
# self._logger.info(f"curren ramp avg confidence {self._curr_ramp_avg_confidence}")
self._last_latency_improvement = self._curr_latency_improvement
self._curr_latency_improvement = latency_improvement
self._batch_size_info.append(batch_size)
for key, _ in data.items():
for ramp_id in self._ramp_ids:
self._historical_data[key][ramp_id] += data[key][ramp_id]
if len(self._batch_size_info) > self._historical_data_size:
size = self._batch_size_info.pop(0)
for key, _ in data.items():
for ramp_id in self._ramp_ids:
# if ramp_id == self._shadow_ramp_id:
# if len(self._historical_data[key][ramp_id]) < \
# sum(self._batch_size_info):
# continue
if len(self._historical_data[key][ramp_id]) <= size:
continue
self._historical_data[key][ramp_id] \
= self._historical_data[key][ramp_id][size:]
# update historical exit rates and ramp utility scores
self._historical_exit_rates.append([exit_rate, batch_size])
# NOTE(ruipan): get_ramp_utilities() is better at capturing which ramp to deactivate
# TODO: incorporate tail latency into consideration
batch_size = utils.round_up_batch_size(batch_size)
latency_config, _ = get_ramp_latencies(
self._ramp_ids, self._latency_calc_list[batch_size])
utilites = get_ramp_utility(
self._ramp_ids, exit_rate, latency_config, self._latency_calc_list[batch_size])
for ramp_id in self._ramp_ids:
self._historical_ramp_utility[ramp_id].append(utilites.pop(0))
if len(self._historical_exit_rates) > 20:
self._historical_exit_rates.pop(0)
for ramp_id in self._ramp_ids:
if len(self._historical_ramp_utility[ramp_id]) > 20:
self._historical_ramp_utility[ramp_id].pop(0)
self._logger.debug("historical exit rates: {}".format(
self._historical_exit_rates))
for ramp_id in self._ramp_ids:
self._logger.debug("ramp {} utility: {}".format(
ramp_id, self._historical_ramp_utility[ramp_id]))
def check_signals_cv(self, batch_id: int, batch_size: int):
"""Check signals for ramp activation/deactivation and threshold tuning
Args:
batch_id (int): batch index
batch_size (int): batch sizes
Returns:
tune_threshold (bool): True if threshold tuning is conducted
ramp_adjustment (bool): True if ramp activation/deactivation is conducted
"""
# threading.Thread(target=self._threshold_tuner.greedy_search, args=).start()
is_threshold_tuned, is_ramp_adjusted = False, False
# return is_threshold_tuned, is_ramp_adjusted # XXX: uncomment for optimal exiting
if self._args.optimal_exiting:
return is_threshold_tuned, is_ramp_adjusted
num_samples = 0.0
correct_samples = 0.0
for acc_info in self._acc_violation_info:
num_samples += acc_info[2]
correct_samples += acc_info[1] * acc_info[2]
curr_overall_acc = correct_samples / num_samples
if self._violation_counter >= 2 or curr_overall_acc < 1 - ACC_LOSS_BUDGET_ACTUAL:
# self._logger.info("violation counter is {}".format(
# self._violation_counter))
for idx, ramp_id in enumerate(self._ramp_ids):
if ramp_id in self._curr_ramp_acc:
if self._curr_ramp_acc[ramp_id] < 1 - ACC_LOSS_BUDGET_ACTUAL:
self._thresholds[idx] = 0.0
else:
if self._acc_violation_info[-1][0] == True or self._after_ramp_adjustment or batch_id == 1:
thresholds, _, _, _ \
= tune_threshold(self._ramp_ids, None, self._historical_data, acc_loss_budget=ACC_LOSS_BUDGET_TUNING, latency_calc_list=self._latency_calc_list[batch_size])
self._thresholds = thresholds
self._after_ramp_adjustment = False
if batch_id % RAMP_CHECK_INTERVAL == 0: # with ramp changes
# if False: # no ramp changes
if curr_overall_acc >= 1 - ACC_LOSS_BUDGET_ACTUAL:
self._recovery_mode = False
self._violation_counter = 0
negative_ramps = []
negative_ramp_idxs = []
ramp_scores = []
for idx, ramp_id in enumerate(self._ramp_ids):
# self._logger.info("ramp {} utility: {}".format(
# ramp_id, self._historical_ramp_utility[ramp_id]))
if all(i <= 0.0 for i in self._historical_ramp_utility[ramp_id]):
# self._logger.info(f"ramp {ramp_id} is negative")
negative_ramps.append(ramp_id)
negative_ramp_idxs.append(idx)
ramp_scores.append([idx, ramp_id, np.array(self._historical_ramp_utility[ramp_id]).mean()])
ramp_scores = sorted(ramp_scores, key=lambda x: x[2])
self._logger.info(f"ramp scores: {ramp_scores}")
# self._logger.info(f"negative ramp: {negative_ramps} negative ramp idxs: {negative_ramp_idxs}")
if len(negative_ramps) > 0: # there is at least one negative ramp
thresholds, latency_improvement, exit_rate, acc \
= tune_threshold(self._ramp_ids, self._shadow_ramp_idx, self._historical_data, acc_loss_budget=ACC_LOSS_BUDGET_TUNING, latency_calc_list=self._latency_calc_list[batch_size])
latency_gap = 5.0 if self.nlp else 2.0
if latency_improvement - self._curr_latency_improvement > latency_gap:
self._thresholds = thresholds
else:
# return is_threshold_tuned, is_ramp_adjusted
total_samples = sum([bz for _, bz in self._historical_exit_rates])
avg_exit_rate_info = sum([exit_rate * bz for exit_rate, bz in self._historical_exit_rates]) / total_samples
# self._logger.info("threshold tuning is not enough")
if self._latest_possible_ramp in negative_ramps and len(self._ramp_ids) == len(negative_ramps):
if len(self._ramp_ids) > 1:
for idx, ramp_id in enumerate(negative_ramps[:-1]):
self.clear_meta_data(ramp_id)
self._ramp_quota += 1
self._ramp_ids = [negative_ramps[-1]]
self._thresholds = [self._thresholds[-1]]
self._after_ramp_adjustment = True
else:
self._after_ramp_adjustment = False
# self._logger.info("all ramps are negative, including last ramp")
return is_threshold_tuned, is_ramp_adjusted
for idx, ramp_id in enumerate(negative_ramps):
self.clear_meta_data(ramp_id)
self._ramp_quota += 1
left = max(negative_ramps[-1], self._ramp_ids[-1]) + 1
right = self._latest_possible_ramp
remained_ramp_idx = [idx for idx in range(len(self._ramp_ids)) if idx not in negative_ramp_idxs]
self._ramp_ids = [ramp_id for idx, ramp_id in enumerate(self._ramp_ids) if idx in remained_ramp_idx]
self._thresholds = [threshold for idx, threshold in enumerate(self._thresholds) if idx in remained_ramp_idx]
if sum([avg_exit_rate_info[idx] for idx in remained_ramp_idx]) > 0.9 or left > right:
self._after_ramp_adjustment = True
return is_threshold_tuned, is_ramp_adjusted
else:
new_ramps = self.get_new_ramps(left, right, 1)
self._ramp_ids += new_ramps
self._thresholds += [0.0]
self._after_ramp_adjustment = True
self._ramp_quota -= 1
for idx, ramp_id in enumerate(self._ramp_ids):
self.clear_meta_data(ramp_id)
return is_threshold_tuned, is_ramp_adjusted
else:
if self._ramp_quota > 0:
if self._ramp_ids[0] > 1:
new_ramp = (self._ramp_ids[0] - 1) // 2
self._ramp_ids = [new_ramp] + self._ramp_ids
self._thresholds = [0.0] + self._thresholds
self._ramp_quota -= 1
for idx, ramp_id in enumerate(self._ramp_ids):
self.clear_meta_data(ramp_id)
self._after_ramp_adjustment = True
else:
self._after_ramp_adjustment = False
else:
if self._ramp_ids[0] < 2:
self._after_ramp_adjustment = False
else:
for idx, ramp_id in enumerate(self._ramp_ids):
self.clear_meta_data(ramp_id)
new_ramp = (self._ramp_ids[0] - 1) // 2
self._ramp_ids = [ramp_id for idx, ramp_id in enumerate(self._ramp_ids) if idx != ramp_scores[-1][0]]
self._thresholds = [threshold for idx, threshold in enumerate(self._thresholds) if idx != ramp_scores[-1][0]]
self._ramp_ids = [new_ramp] + self._ramp_ids
self._thresholds = [0.0] + self._thresholds
self._after_ramp_adjustment = True
return is_threshold_tuned, is_ramp_adjusted
def check_signals_nlp(self, batch_id: int, batch_size: int):
"""Check signals for ramp activation/deactivation and threshold tuning