Skip to content

We share in this repository some codes and data used during our research about glass property prediction and the design of new glasses.

License

Notifications You must be signed in to change notification settings

ealcobaca/mlglass

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning for Glass Science (MLGlass)

In this repository, we keep some of the scripts and data used during our investigation about glass property prediction and design of new glasses (see articles below). We have developed machine learning models capable of predicting the most common properties of glass with high performance. In addition, we created several scripts to optimize the models generated by the machine learning algorithms and to understand the knowledge acquired by these models (explainability).

Unfortunately, we failed to put explicit comments in some codes while they were being developed. Sorry, this can cause you to waste additional time trying to understand the codes. If you want to do a full reading, I recommend starting with Makefile. There we describe how each script was executed on our servers.

Publications

Below are some articles where we describe the results obtained. Please note that we make versions available on Arxiv, in case you do not have access to these journals.

Alcobaça, E., Mastelini, S. M., Botari, T., Pimentel, B. A., Cassar, D. R., de Leon Ferreira, A. C. P., & Zanotto, E. D. (2020). Explainable machine learning algorithms for predicting glass transition temperatures. Acta Materialia, 188, 92-100. (journal)(open-access)(sup-material)

Cassar, D. R., Mastelini, S. M., Botari, T., Alcobaça, E., de Carvalho, A. C., & Zanotto, E. D. (2021). Predicting and interpreting oxide glass properties by machine learning using large datasets. Ceramics International. (journal)(open-access)

Mastelini, S. M., Cassar, D. R., Alcobaça, E., Botari, T., de Carvalho, A. C., & Zanotto, E. D. (2021). Machine learning unveils composition-property relationships in chalcogenide glasses. arXiv preprint arXiv:2106.07749. (journal)(open-access)

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •