-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path20q.py
518 lines (364 loc) · 13.1 KB
/
20q.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
from zoo import Zoo
import random
from neural import NeuralNetwork,NeuronLayer,Neuron
import math
from copy import copy
import sys
import numpy as np
import matplotlib.pyplot as plt
# A class to store a 20Q round
# Takes in a target (correct answer) and nueral network
# Autoplay: generates an input vector for training / testing the network
# Play: interactive game between user and bot
class Q20(object):
def __init__(self,nn,qs,ts,q_limit):
self.qs = qs
self.ts = ts
self.q_limit = q_limit # q_limit <= num_qs
self.num_qs = len(qs)
self.num_ts = len(ts)
self.nn = nn # brain
# randomly generate set of questions + answers for target
def autoplay(self,target):
# initialise input vector
input_vector = [0]*self.num_qs
qs_asked = []
# prepare target vector based on supplied target
target_vector = [0]*self.num_ts
target_vector[target] = 1
# randomly generate q_limit questions
for __ in range(self.q_limit):
# select a random question that hasn't been asked
qi = random.randint(0,self.num_qs-1)
while qi in qs_asked:
qi = random.randint(0,self.num_qs-1)
input_vector[qi] = Z.get_answer_i(qi,target) # returns 1 for yes, -1 for no
qs_asked.append(qi)
# train the network object
self.nn.backpropagate(input_vector,target_vector)
return input_vector
# autoplay with smart question selection
def autoplay_smartq(self,target):
output = [0]*self.num_ts # initialise output for first q selection
input_vector = [0]*self.num_qs
target_vector = [0]*self.num_ts
target_vector[target] = 1
qi_order = []
o_order = []
qs_asked = []
# guessed = []
best_guess = None
for i in range(self.q_limit):
# index of the best guess at this point in the game
best_guess = output.index(max(output))
# get best next question
best_qi = self.smart_q(output,input_vector,qs_asked)
if best_qi == -1: break # no more questions
# set the question index to +1 or -1 depending on the response
input_vector[best_qi] = Z.get_answer_i(best_qi,target)
if best_qi not in qs_asked: qs_asked.append(best_qi)
qi_order.append(best_qi)
# feed the network forward with the new input vector
output = self.nn.feed_forward(input_vector)
o_order.append([self.ts[best_guess],100*round(max(output),2)])
# set up q/a string for print
qs_str = []
for i in range(len(qi_order)):
ans = Z.get_answer_i(qi_order[i],target)
if ans == 1: ansstr = ' y '
else: ansstr = ' n '
q_str = str(i+1)+'. '+qs[qi_order[i]] + ansstr + '(' + str(o_order[i][0]) + ' ' + str(o_order[i][1]) + '%)'
qs_str.append(q_str)
if best_guess == target:
# reinforce successful win
print 'win:',self.ts[best_guess],'...',len(qs_str),'qs:',' '.join(qs_str)
return (1,input_vector)
else:
print 'LOSS:',self.ts[best_guess],'(',self.ts[target],')','...',len(qs_str),'qs:',' '.join(qs_str)
return (0,input_vector)
# smart question selection algorithm based on the current probabilities (output) and questions asked (input_vector, qs_asked)
def smart_q(self,output,input_vector,qs_asked):
best_qi = -1
best_diff = -1
for j in range(self.num_qs):
if j in qs_asked: continue # question has already been asked, ignore
# test vectors for q-yes and q-no
test_vector_no = copy(input_vector)
test_vector_no[j] = -1
test_vector_yes = copy(input_vector)
test_vector_yes[j] = 1
# test outputs for q-yes
test_output_yes = self.nn.feed_forward(test_vector_yes)
# test outputs for q-no
test_output_no = self.nn.feed_forward(test_vector_no)
# absolute differences between current probabilities and hypothetical probabilities
test_diff_yes = sum([abs(x-y) for x,y in zip(test_output_yes,output)])
test_diff_no = sum([abs(x-y) for x,y in zip(test_output_no,output)])
# worse case diff score
if test_diff_yes > test_diff_no: test_diff = test_diff_no
else: test_diff = test_diff_yes
# select the question with the greatest diff,
# i.e. most descriptive jump from current probabilities,
# of the worst case answer for each question
if best_qi == -1 or test_diff >= best_diff:
best_diff = test_diff
best_qi = j
return best_qi
# user mode
def play(self):
print '\n================ YOUR TURN: SELECT ANIMAL ================'
print 'select an animal from the list:'
print '[',', '.join(self.ts),']'
raw_input("press enter to start")
print '====================== '+str(self.q_limit)+' QUESTIONS ======================'
# play game
output = [0]*self.num_ts # initialise output for first q selection
input_vector = [0]*self.num_qs
qs_asked = []
for i in range(self.q_limit-1):
# index of the best guess at this point in the game
best_guess = output.index(max(output))
# get the next best question
best_qi = self.smart_q(output,input_vector,qs_asked)
if best_qi == -1: break # we are out of questions
print str(i+1)+'. '+self.qs[best_qi]
if best_qi not in qs_asked: qs_asked.append(best_qi)
# get user input as answer
ans_str = raw_input('Answer? (y/n) ')
while ans_str != 'y' and ans_str != 'n':
ans_str = raw_input('Invalid. Answer? (y/n) ')
if ans_str == 'y': ans = 1
else: ans = -1
# add the question response to the input vector
input_vector[best_qi] = ans
output = self.nn.feed_forward(input_vector)
print '('+self.ts[best_guess]+' '+str(100*round(max(output),2))+'%)'
# best final guess
best_guess = output.index(max(output))
# initialise target vector
target_vector = [0]*self.num_ts
print self.q_limit,'. are you thinking of a',self.ts[best_guess],'?'
ans_str = raw_input('Answer? (y/n) ')
while ans_str != 'y' and ans_str != 'n':
ans_str = raw_input('Invalid. Answer? (y/n) ')
if ans_str == 'y':
print '\nBOT WINS.'
# fill target vector with correct guess
target_vector[best_guess] = 1
else:
print '\nYOU WIN.\n'
print 'what animal were you thinking of?'
t_str = raw_input('Animal: ')
while t_str not in self.ts:
t_str = raw_input('Not in list, select again. Animal: ')
# request the correct animal for training
target_vector[self.ts.index(t_str)] = 1
# train the network based on the win / loss
print 'training network...'
self.nn.backpropagate(input_vector,target_vector)
# # # # # # #
# TRAINING #
# # # # # # #
def train(nn,training_size):
i = 0
interval = int(training_size/100)
game = Q20(nn,qs,ts,question_limit)
for __ in range(int(training_size/len(targets))):
t = 0
for target_vector in targets:
input_vector = game.autoplay(t)
i+=1
t+=1
return nn
# # # # # # # #
# VALIDATING #
# # # # # # # #
def validate(nn,num_games):
game = Q20(nn,qs,ts,question_limit)
print '\n======================================='
print 'VALIDATION SET'
print '=======================================\n'
wins = 0
testing_sets = []
for t in range(num_games):
t = random.randint(0,num_ts-1)
target_vector = targets[t]
win,input_vector = game.autoplay_smartq(t)
testing_sets.append([input_vector,target_vector])
if win == 1: wins+=1
accuracy = (float(wins)/float(num_games))
error = nn.calculate_total_error(testing_sets)
print '======================================='
print accuracy*100,'% accuracy, error=',error
print '======================================='
return (error,accuracy)
# # # # # #
# TESTING #
# # # # # #
def test(nn):
game = Q20(nn,qs,ts,question_limit)
while True:
game.play()
nn.save('saved/'+SRC+'.json')
# cross-validate process (training a network)
def crossvalidate():
learning_rate = 0.1
if SRC == 'micro': hidden_size = 4
elif SRC == 'medium': hidden_size = 12
elif SRC == 'small': hidden_size = 8
else: hidden_size = 38
num_weights = int(hidden_size*input_size + output_size*hidden_size)
nn = NeuralNetwork(num_inputs=input_size,num_hidden=hidden_size,num_outputs=output_size,learning_rate=learning_rate,hidden_layer_bias=1,output_layer_bias=1)
print '\n======================================='
print 'NETWORK SUMMARY'
print '=======================================\n'
print '#input =',input_size
print '#output =',output_size
print '#hidden =',hidden_size
print 'learning rate =',learning_rate
print '#weights =',num_weights
# setup epoch intervals, upper epoch = #weights^2
upper_epoch = round(num_weights*num_weights,100)
if upper_epoch > 1000000: upper_epoch = 1000000 # max 1m epoch
interval = int(upper_epoch/10) # 10 intervals
validate_epoch = int(interval/10)
if validate_epoch > 200: validate_epoch = 200 # max 200 validation set (to save computational time)
print 'upper epoch =',upper_epoch
print 'interval =',interval
print '#validation sets =',validate_epoch
print 'error breakpoint <=',validate_epoch/10
i = 0
epoch = 0
epoch_intervals = []
epoch_errors = []
epoch_accuracy = []
while epoch < upper_epoch:
epoch += interval
print '\n======================================='
print i,'. # TRAINING SETS:',epoch
print '=======================================\n'
train(nn,interval)
error,accuracy = validate(nn,validate_epoch)
epoch_intervals.append(epoch)
epoch_errors.append(error)
epoch_accuracy.append(accuracy)
if error < validate_epoch/10: break # once MSE is small enough, break
i+=1
# save network temporarily
nn.save('saved/'+SRC+'-tmp.json')
# plot epoch vs error, accuracy
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(epoch_intervals,epoch_errors,'b-o')
ax2.plot(epoch_intervals,epoch_accuracy,'r-o')
plt.title('Epoch vs error\nq_limit = '+str(question_limit)+' ('+str(SRC)+')')
ax1.set_ylabel('Error')
ax2.set_ylabel('Accuracy')
ax1.set_xlabel('Epoch (#training sets)')
plt.show()
test(nn) # play
def test_learning_rate():
learning_rates = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
training_errors = []
training_accuracy = []
# hardcoded for 'big'
epoch = 150000
hidden_size = 38
i = 0
for curr_rate in learning_rates:
print '\n======================================='
print i+1,'. LEARNING RATE:',curr_rate
print '=======================================\n'
nn = NeuralNetwork(num_inputs=input_size,num_hidden=hidden_size,num_outputs=output_size,learning_rate=curr_rate,hidden_layer_bias=1,output_layer_bias=1)
train(nn,epoch)
error,accuracy = validate(nn,1000)
training_errors.append(error)
training_accuracy.append(accuracy)
i+=1
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(learning_rates,training_errors,'b-o')
ax2.plot(learning_rates,training_accuracy,'r-o')
plt.title('Learning rate vs error\n('+str(SRC)+', epoch = '+str(epoch)+')')
ax1.set_ylabel('Error')
ax2.set_ylabel('Accuracy')
ax1.set_xlabel('Learning rate')
plt.show()
def test_num_hidden():
# hardcoded for 'big'
epoch = 150000
training_hidden = []
training_errors = []
training_accuracy = []
i = 0
for x in range(10,50,2):
print '\n======================================='
print i+1,'. # HIDDEN:',x
print '=======================================\n'
nn = NeuralNetwork(num_inputs=input_size,num_hidden=x,num_outputs=output_size,learning_rate=0.8,hidden_layer_bias=1,output_layer_bias=1)
train(nn,epoch)
error,accuracy = validate(nn,1000)
training_errors.append(error)
training_hidden.append(x)
training_accuracy.append(accuracy)
i+=1
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(training_hidden,training_errors,'b-o')
ax2.plot(training_hidden,training_accuracy,'r-o')
plt.title('# hidden neurons vs error\n('+str(SRC)+', epoch = '+str(epoch)+')')
ax1.set_ylabel('Error')
ax2.set_ylabel('Accuracy')
ax1.set_xlabel('# hidden neurons')
plt.show()
def load():
# load network and play game
filename = 'saved/'+SRC+'.json'
print '\nloading network from',filename
nn = NeuralNetwork(loadfile=filename) # load network
print '\n======================================='
print 'NETWORK SUMMARY'
print '=======================================\n'
print '#input =',nn.num_inputs
print '#output =',nn.num_outputs
print '#hidden =',nn.num_hidden
# validate(nn,50) # validate loaded network
test(nn) # play
# global variables
question_limit = 0
qs = []
num_qs = 0
ts = []
num_ts = 0
input_size = 0
output_size = 0
learning_rate = 0.0
if __name__ == "__main__":
# initialise global variables
SRC = 'big' # default source is big dataset
if len(sys.argv) >= 2: SRC = sys.argv[1] # take user source
# get questions and answers from the Zoo class
Z = Zoo('data/'+SRC+'.csv')
qs = Z.questions
num_qs = len(qs)
ts = Z.targets
num_ts = len(ts)
# hardcoded question limits for each dataset (+1 for last question guess)
if SRC == 'big': question_limit = 13+1
elif SRC == 'medium': question_limit = 6+1
elif SRC == 'small': question_limit = 5+1
elif SRC == 'micro': question_limit = 4+1
else: question_limit = len(qs)
# input and output size for nn are equal to the num qs and num ts respectively
input_size = len(qs)
output_size = len(ts)
# list of target vectors form a diagonal matrix
targets = [[1 if i == j else 0 for i in range(output_size)]
for j in range(output_size)]
# default mode is play (load from existing network)
MODE = 'play'
if len(sys.argv) >= 3: MODE = sys.argv[2]
if MODE == 'play': load()
elif MODE == 'crossvalidate': crossvalidate()
# elif MODE == 'hidden': test_num_hidden()
# elif MODE == 'learningrate': test_learning_rate()