Skip to content

Commit

Permalink
data_modify() gains .it and .at
Browse files Browse the repository at this point in the history
  • Loading branch information
strengejacke committed Feb 6, 2024
1 parent 9f39fcd commit 67c3d9b
Show file tree
Hide file tree
Showing 5 changed files with 182 additions and 86 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: datawizard
Title: Easy Data Wrangling and Statistical Transformations
Version: 0.9.1
Version: 0.9.1.1
Authors@R: c(
person("Indrajeet", "Patil", , "patilindrajeet.science@gmail.com", role = "aut",
comment = c(ORCID = "0000-0003-1995-6531", Twitter = "@patilindrajeets")),
Expand Down Expand Up @@ -72,7 +72,7 @@ VignetteBuilder:
Encoding: UTF-8
Language: en-US
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3.9000
RoxygenNote: 7.3.1
Config/testthat/edition: 3
Config/testthat/parallel: true
Config/Needs/website:
Expand Down
7 changes: 7 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
# datawizard 0.9.2

CHANGES

* `data_modify()` gets three new arguments, `.at`, `.if` and `.modify`, to modify
variables at specific positions or based on logical conditions.

# datawizard 0.9.1

CHANGES
Expand Down
237 changes: 154 additions & 83 deletions R/data_modify.R
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,14 @@
#' Note that newly created variables can be used in subsequent expressions.
#' See also 'Examples'.
#'
#' @param .at A character vector of variable names that should be modified. This
#' argument is used in combination with the `.modify` argument.
#' @param .if A function that returns `TRUE` for columns in the data frame where
#' `.if` applies. This argument is used in combination with the `.modify` argument.
#' @param .modify A function that modifies the variables defined in `.at` or `.if`.
#' This argument is used in combination with either the `.at` or the `.if`argument.
#' If `.modify` is not provided, `.at` and `.if` are ignored.
#'
#' @note `data_modify()` can also be used inside functions. However, it is
#' recommended to pass the recode-expression as character vector or list of
#' characters.
Expand Down Expand Up @@ -91,6 +99,15 @@
#'
#' new_exp <- c("SW_double = 2 * Sepal.Width", "SW_fraction = SW_double / 10")
#' foo(iris, new_exp)
#'
#' # modify at specific positions or if condition is met
#' d <- iris[1:5, ]
#' data_modify(d, .at = "Species", .modify = as.numeric)
#' data_modify(d, .if = is.factor, .modify = as.numeric)
#'
#' # can be combined with dots
#' data_modify(d, new_length = Petal.Length * 2, .at = "Species", .modify = as.numeric)
#'
#' @export
data_modify <- function(data, ...) {
UseMethod("data_modify")
Expand All @@ -102,113 +119,120 @@ data_modify.default <- function(data, ...) {
}

#' @export
data_modify.data.frame <- function(data, ...) {
data_modify.data.frame <- function(data, ..., .if = NULL, .at = NULL, .modify = NULL) {
dots <- eval(substitute(alist(...)))
column_names <- colnames(data)

# we check for character vector of expressions, in which case
# "dots" should be unnamed
if (is.null(names(dots))) {
# if we have multiple strings, concatenate them to a character vector
# and put it into a list...
if (length(dots) > 1) {
if (all(vapply(dots, is.character, logical(1)))) {
dots <- list(unlist(dots))
} else {
insight::format_error("You cannot mix string and literal representation of expressions.")
# check if we have dots, or only at/modify ----

if (length(dots)) {
# we check for character vector of expressions, in which case
# "dots" should be unnamed
if (is.null(names(dots))) {
# if we have multiple strings, concatenate them to a character vector
# and put it into a list...
if (length(dots) > 1) {
if (all(vapply(dots, is.character, logical(1)))) {
dots <- list(unlist(dots))
} else {
insight::format_error("You cannot mix string and literal representation of expressions.")
}
}
# expression is given as character string, e.g.
# a <- "double_SepWidth = 2 * Sepal.Width"
# data_modify(iris, a)
# or as character vector, e.g.
# data_modify(iris, c("var_a = Sepal.Width / 10", "var_b = Sepal.Width * 10"))
character_symbol <- tryCatch(.dynEval(dots[[1]]), error = function(e) NULL)
# do we have a character vector? Then we can proceed
if (is.character(character_symbol)) {
dots <- lapply(character_symbol, function(s) {
# turn value from character vector into expression
str2lang(.dynEval(s))
})
names(dots) <- vapply(dots, function(n) insight::safe_deparse(n[[2]]), character(1))
}
}
# expression is given as character string, e.g.
# a <- "double_SepWidth = 2 * Sepal.Width"
# data_modify(iris, a)
# or as character vector, e.g.
# data_modify(iris, c("var_a = Sepal.Width / 10", "var_b = Sepal.Width * 10"))
character_symbol <- tryCatch(.dynEval(dots[[1]]), error = function(e) NULL)
# do we have a character vector? Then we can proceed
if (is.character(character_symbol)) {
dots <- lapply(character_symbol, function(s) {
# turn value from character vector into expression
str2lang(.dynEval(s))
})
names(dots) <- vapply(dots, function(n) insight::safe_deparse(n[[2]]), character(1))
}
}

for (i in seq_along(dots)) {
# iterate expressions for new variables
symbol <- dots[[i]]
for (i in seq_along(dots)) {
# iterate expressions for new variables
symbol <- dots[[i]]

# expression is given as character string in a variable, but named, e.g.
# a <- "2 * Sepal.Width"
# data_modify(iris, double_SepWidth = a)
# we reconstruct the symbol as if it were provided as literal expression.
# However, we need to check that we don't have a character vector,
# like: data_modify(iris, new_var = "a")
# this one should be recycled instead.
if (!is.character(symbol)) {
eval_symbol <- .dynEval(symbol, ifnotfound = NULL)
if (is.character(eval_symbol)) {
symbol <- try(str2lang(paste0(names(dots)[i], " = ", eval_symbol)), silent = TRUE)
# we may have the edge-case of having a function that returns a character
# vector, like "new_var = sample(letters[1:3])". In this case, "eval_symbol"
# is of type character, but no symbol, thus str2lang() above creates a
# wrong pattern. We then take "eval_symbol" as character input.
if (inherits(symbol, "try-error")) {
symbol <- str2lang(paste0(
names(dots)[i],
" = c(", paste0("\"", eval_symbol, "\"", collapse = ","), ")"
))
# expression is given as character string in a variable, but named, e.g.
# a <- "2 * Sepal.Width"
# data_modify(iris, double_SepWidth = a)
# we reconstruct the symbol as if it were provided as literal expression.
# However, we need to check that we don't have a character vector,
# like: data_modify(iris, new_var = "a")
# this one should be recycled instead.
if (!is.character(symbol)) {
eval_symbol <- .dynEval(symbol, ifnotfound = NULL)
if (is.character(eval_symbol)) {
symbol <- try(str2lang(paste0(names(dots)[i], " = ", eval_symbol)), silent = TRUE)
# we may have the edge-case of having a function that returns a character
# vector, like "new_var = sample(letters[1:3])". In this case, "eval_symbol"
# is of type character, but no symbol, thus str2lang() above creates a
# wrong pattern. We then take "eval_symbol" as character input.
if (inherits(symbol, "try-error")) {
symbol <- str2lang(paste0(
names(dots)[i],
" = c(", paste0("\"", eval_symbol, "\"", collapse = ","), ")"
))
}
}
}
}

# finally, we can evaluate expression and get values for new variables
new_variable <- try(with(data, eval(symbol)), silent = TRUE)
# finally, we can evaluate expression and get values for new variables
new_variable <- try(with(data, eval(symbol)), silent = TRUE)

# successful, or any errors, like misspelled variable name?
if (inherits(new_variable, "try-error")) {
# in which step did error happen?
step_number <- switch(as.character(i),
"1" = "the first expression",
"2" = "the second expression",
"3" = "the third expression",
paste("expression", i)
)
step_msg <- paste0("There was an error in ", step_number, ".")
# try to find out which variable was the cause for the error
error_msg <- attributes(new_variable)$condition$message
if (grepl("object '(.*)' not found", error_msg)) {
error_var <- gsub("object '(.*)' not found", "\\1", error_msg)
# successful, or any errors, like misspelled variable name?
if (inherits(new_variable, "try-error")) {
# in which step did error happen?
step_number <- switch(as.character(i),
"1" = "the first expression",
"2" = "the second expression",
"3" = "the third expression",
paste("expression", i)
)
step_msg <- paste0("There was an error in ", step_number, ".")
# try to find out which variable was the cause for the error
error_msg <- attributes(new_variable)$condition$message
if (grepl("object '(.*)' not found", error_msg)) {
error_var <- gsub("object '(.*)' not found", "\\1", error_msg)
insight::format_error(
paste0(step_msg, " Variable \"", error_var, "\" was not found in the dataset or in the environment."),
.misspelled_string(colnames(data), error_var, "Possibly misspelled or not yet defined?")
)
} else {
insight::format_error(paste0(
step_msg, " ", insight::format_capitalize(error_msg),
". Possibly misspelled or not yet defined?"
))
}
}

# give informative error when new variable doesn't match number of rows
if (!is.null(new_variable) && length(new_variable) != nrow(data) && (nrow(data) %% length(new_variable)) != 0) {
insight::format_error(
paste0(step_msg, " Variable \"", error_var, "\" was not found in the dataset or in the environment."),
.misspelled_string(colnames(data), error_var, "Possibly misspelled or not yet defined?")
"New variable has not the same length as the other variables in the data frame and cannot be recycled."
)
} else {
insight::format_error(paste0(
step_msg, " ", insight::format_capitalize(error_msg),
". Possibly misspelled or not yet defined?"
))
}
}

# give informative error when new variable doesn't match number of rows
if (!is.null(new_variable) && length(new_variable) != nrow(data) && (nrow(data) %% length(new_variable)) != 0) {
insight::format_error(
"New variable has not the same length as the other variables in the data frame and cannot be recycled."
)
data[[names(dots)[i]]] <- new_variable
}

data[[names(dots)[i]]] <- new_variable
}

# check if we have at/modify ----
data <- .modify_at(data, .at, .if, .modify, column_names)

data
}

#' @export
data_modify.grouped_df <- function(data, ...) {
data_modify.grouped_df <- function(data, ..., .if = NULL, .at = NULL, .modify = NULL) {
# we need to evaluate dots here, and pass them with "do.call" to
# the data.frame method later...
dots <- match.call(expand.dots = FALSE)$`...`
dots <- match.call(expand.dots = FALSE)[["..."]]

# works only for dplyr >= 0.8.0
grps <- attr(data, "groups", exact = TRUE)
Expand Down Expand Up @@ -262,8 +286,55 @@ data_modify.grouped_df <- function(data, ...) {
data[rows, ] <- data_modify.data.frame(data[rows, ], ...)
}

# check if we have at/modify ----
data <- .modify_at(data, .at, .if, .modify, column_names)

# set back attributes and class
data <- .replace_attrs(data, attr_data)
class(data) <- class_attr
data
}


# helper -------------

.modify_at <- function(data, .at, .if, .modify, column_names) {
# make sure either .at or .if is defined, not both
if (!is.null(.at) && !is.null(.if)) {
insight::format_error("You cannot use both `.at` and `.if` at the same time.")
}
if ((!is.null(.at) || !is.null(.if)) && !is.null(.modify)) {
# if we have ".if" defined, specify ".at"
if (!is.null(.if)) {
.at <- column_names[vapply(data[column_names], .if, logical(1))]
}
# make sure "modify" is a function
if (!is.function(.modify)) {
insight::format_error("`.modify` must be a function.")
}
# check for valid defined column names
if (!all(.at %in% column_names)) {
not_found <- .at[!.at %in% column_names]
insight::format_alert(
paste0(
"Variable",
ifelse(length(not_found) > 1, "s ", " "),
text_concatenate(not_found, enclose = "\""),
ifelse(length(not_found) > 1, "were", "was"),
" not found in the dataset."
),
.misspelled_string(column_names, not_found, "Possibly misspelled or not yet defined?")
)
}
# modify variables
found <- .at[.at %in% column_names]
if (length(found)) {
for (i in found) {
data[[i]] <- .modify(data[[i]])
}
} else {
insight::format_alert("No variables found in the dataset that match the `.if` or `.at` argument.")
}
}
data
}
19 changes: 19 additions & 0 deletions man/data_modify.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 0 additions & 1 deletion man/datawizard-package.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 67c3d9b

Please sign in to comment.