-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
executable file
·354 lines (326 loc) · 15.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG" />
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG" />
<meta
property="og:description"
content="SOCIAL MEDIA DESCRIPTION TAG TAG"
/>
<meta property="og:url" content="URL OF THE WEBSITE" />
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200" />
<meta property="og:image:height" content="630" />
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG" />
<meta
name="twitter:description"
content="TWITTER BANNER DESCRIPTION META TAG"
/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta
name="twitter:image"
content="static/images/your_twitter_banner_image.png"
/>
<meta name="twitter:card" content="summary_large_image" />
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>
3D Gaze Tracking for Studying Collaborative Interactions in Mixed-Reality
Environments
</title>
<link rel="icon" type="image/x-icon" href="static/images/favicon.ico" />
<link
href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet"
/>
<link rel="stylesheet" href="static/css/bulma.min.css" />
<link rel="stylesheet" href="static/css/bulma-carousel.min.css" />
<link rel="stylesheet" href="static/css/bulma-slider.min.css" />
<link rel="stylesheet" href="static/css/fontawesome.all.min.css" />
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"
/>
<link rel="stylesheet" href="static/css/index.css" />
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">
3D Gaze Tracking for Studying Collaborative
Interactions in Mixed-Reality Environments
</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<span class="author-block">
<a href="https://edavalosanaya.github.io" target="_blank"
>Eduardo Davalos</a
>,</span
>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=_E0SGAkAAAAJ&hl=en" target="_blank"
>Yike Zhang</a
>,</span
>
<span class="author-block">
<a href="https://sites.google.com/view/ashwintudur/home" target="_blank"
>Ashwin TS</a
>,
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=6QmCCGEAAAAJ&hl=en" target="_blank"
>Joyce Horn Fonteles</a
>,
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=ePApBaMAAAAJ&hl=en" target="_blank"
>Umesh Timalsina</a
>, and
</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=-m5wrTkAAAAJ&hl=en" target="_blank"
>Gautam Biswas</a
>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"
>Vanderbilt University<br />International Conference of Multimodal Interaction - 2024<br />HumanEYEze workshop</span
>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a
href="https://arxiv.org/pdf/2406.11003.pdf"
target="_blank"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Github link -->
<span class="link-block">
<a
href="https://github.com/edavalosanaya/3DGazeTracking_ICMIW2024"
target="_blank"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- ArXiv abstract Link -->
<span class="link-block">
<a
href="https://arxiv.org/abs/2406.11003"
target="_blank"
class="external-link button is-normal is-rounded is-dark"
>
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Teaser video-->
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<img
src="static/images/teaser.png"
alt="Teaser image"
class="teaser-image"
/>
<h2 class="subtitle has-text-centered">
Sequential representations of a scene: monocular, 3D skeleton data, and full 3D reconstruction to perform gaze analysis.
</h2>
</div>
</div>
</section>
<!-- End teaser video -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
This study presents a novel framework for 3D gaze tracking tailored for mixed-reality settings, aimed at enhancing joint attention and collaborative efforts in team-based scenarios. Conventional gaze tracking, often limited by monocular cameras and traditional eye-tracking apparatus, struggles with simultaneous data synchronization and analysis from multiple participants in group contexts. Our proposed framework leverages state-of-the-art computer vision and machine learning techniques to overcome these obstacles, enabling precise 3D gaze estimation without dependence on specialized hardware. Utilizing facial recognition and deep learning, the framework achieves real-time, tracking of gaze patterns across several individuals, addressing common depth estimation errors, and ensuring spatial and identity consistency within the dataset. This provides mechanisms for significant advances in behavior and interaction analysis in educational and professional training applications in dynamic and unstructured environments.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<section class="framework overview">
<div class="container is-max-desktop">
<div class="hero-body">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Framework Overview</h2>
</div>
</div>
<img src="static/images/overview_framework.png" alt="MY ALT TEXT" />
<div class="content has-text-justified">
<p>
This framework integrates facial recognition and advanced gaze analysis to enable real-time 3D gaze tracking in collaborative mixed-reality environments. It precisely estimates gaze directions and maps interactions within dynamically reconstructed 3D spaces, enhancing the study of social dynamics and participant engagement.
</p>
</div>
</div>
</div>
</section>
<section class="facial recognition">
<div class="container is-max-desktop">
<div class="hero-body">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Facial Recognition</h2>
</div>
</div>
<img src="static/images/reid_analysis.png" alt="MY ALT TEXT" />
<div class="content has-text-justified">
<p>
The facial recognition module utilizes a finely-tuned Multi-task Cascaded Convolutional Network (MTCNN) for detecting and tracking faces in real-time. This module identifies and tracks participants across frames, even amidst movement and occlusions. By creating vector embeddings with FaceNet, the system ensures consistent identification, linking detected faces to their respective identities. This enables detailed analysis of individual participant behavior, providing a robust foundation for subsequent gaze tracking and interaction mapping within the 3D environment.
</p>
</div>
</div>
</div>
</section>
<section class="gaze estimation">
<div class="container is-max-desktop">
<div class="hero-body">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Gaze Analysis in 3D Reconstructed Scene</h2>
</div>
</div>
<img src="static/images/gaze_analysis.png" alt="MY ALT TEXT" />
<div class="content has-text-justified">
<p>
The gaze estimation module is designed to provide precise 3D gaze tracking by combining advanced computer vision techniques with depth estimation. Initially, the module processes face crops using L2CS-Net to output 3D gaze vectors that indicate the direction of gaze through pitch and yaw angles. These vectors are then integrated into a 3D rotation matrix to establish gaze orientation. To further enhance accuracy, the module employs ZoeDepth for metric depth estimation, allowing for consistent and realistic 3D scene reconstruction. By reprojecting the 2D facial data into a 3D space, the system accurately determines where each participant is looking within the reconstructed environment. This method ensures that the gaze interactions are precisely mapped to relevant objects or areas of interest, providing deep insights into participant focus and engagement in dynamic, mixed-reality settings.
</p>
</div>
</div>
</div>
</section>
<!-- Image carousel -->
<section class="hero is-small">
<div class="hero-body">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Results and Analysis</h2>
</div>
</div>
<div class="container">
<div id="results-carousel" class="carousel results-carousel">
<div class="item">
<!-- Your image here -->
<img src="static/images/network_graph.png" alt="MY ALT TEXT" />
<h2 class="subtitle has-text-centered">
Gaze interaction network graph.
</h2>
</div>
<div class="item">
<!-- Your image here -->
<img src="static/images/gaze_estimation_timeline_a.png" alt="MY ALT TEXT" />
<h2 class="subtitle has-text-centered">
Gaze timeline example 1 in GEM-STEP learning environment.
</h2>
</div>
<div class="item">
<!-- Your image here -->
<img src="static/images/gaze_estimation_timeline_b.png" alt="MY ALT TEXT" />
<h2 class="subtitle has-text-centered">
Gaze timeline example 2 in GEM-STEP learning environment.
</h2>
</div>
</div>
</div>
</div>
</section>
<!-- End image carousel -->
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>
@misc{davalos20243dgazetrackingstudying,
title={3D Gaze Tracking for Studying Collaborative Interactions in Mixed-Reality Environments},
author={Eduardo Davalos and Yike Zhang and Ashwin T. S. and Joyce H. Fonteles and Umesh Timalsina and Guatam Biswas},
year={2024},
eprint={2406.11003},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2406.11003},
}
</code></pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the
<a
href="https://github.com/eliahuhorwitz/Academic-project-page-template"
target="_blank"
>Academic Project Page Template</a
>
which was adopted from the <a
href="https://nerfies.github.io"
target="_blank"
>Nerfies</a
> project page. You are free to borrow the of this website, we
just ask that you link back to this page in the footer. <br />
This website is licensed under a
<a
rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/"
target="_blank"
>Creative Commons Attribution-ShareAlike 4.0 International
License</a
>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>