-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP1_final_code.py
276 lines (198 loc) · 10.3 KB
/
P1_final_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
'''
Project 1 - Lane Detection Pipeline
Effendi Dufford, 2017/6/1
This project detects lane lines in images by applying color/region masks, Canny edge
detection, Hough transform for determining lines, and setting the left/right lanes by
a weighted linear polyfit. The raw left/right lines and the final detected left/right
lanes are overlaid on the original image as the output.
'''
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import cv2
import math
import os
from moviepy.editor import VideoFileClip
from IPython.display import HTML
''' Helper functions '''
def grayscale(img):
return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
def canny(img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)
def gaussian_blur(img, kernel_size):
return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
def region_of_interest(img, vertices):
#defining a blank mask to start with
mask = np.zeros_like(img)
#defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
#filling pixels inside the polygon defined by "vertices" with the fill color
cv2.fillPoly(mask, vertices, ignore_mask_color)
#returning the image only where mask pixels are nonzero
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(img, (x1, y1), (x2, y2), color, thickness)
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
draw_lines(line_img, lines)
return line_img
def weighted_img(img, initial_img, α=0.8, β=1., λ=0.):
return cv2.addWeighted(initial_img, α, img, β, λ)
''' My Pipeline START '''
def my_lane_detection_pipeline(image, debug_images=False):
''' Main pipeline to detect lane lines in a road image '''
# Step 1 - Filter and enhance image by lane color
image_s1 = filter_lane_color(image)
# Step 2 - Canny edge detection with Gaussian blur and region mask
image_s2 = detect_lane_edges(image_s1)
# Step 3 - Raw line detection by Hough transform and classify left/right by angle
(image_s3, left_lines, right_lines) = detect_lane_lines(image_s2, image)
# Step 4 - Set left/right lanes by weighted linear polyfit of raw lines
image_s4 = set_lanes(left_lines, right_lines, image_s3)
# Save images of each step for debugging and documentation
if debug_images:
mpimg.imsave('test_images_output/'+image_name.replace('.jpg','_s0.jpg'), image)
mpimg.imsave('test_images_output/'+image_name.replace('.jpg','_s1.jpg'), image_s1, cmap = 'gray')
mpimg.imsave('test_images_output/'+image_name.replace('.jpg','_s2.jpg'), image_s2)
mpimg.imsave('test_images_output/'+image_name.replace('.jpg','_s3.jpg'), image_s3)
mpimg.imsave('test_images_output/'+image_name.replace('.jpg','_s4.jpg'), image_s4)
# Output image with overlaid raw lane lines and detected left/right lanes
return image_s4
def filter_lane_color(image):
''' Filter and enhance image by yellow/white lane colors '''
YELLOW_HSV_LOWER = np.array([20, 100, 100])
YELLOW_HSV_UPPER = np.array([40, 255, 255])
WHITE_HSV_LOWER = np.array([0, 0, 220])
WHITE_HSV_UPPER = np.array([255, 255, 255])
image_wk = np.copy(image) # working copy
image_hsv = cv2.cvtColor(image_wk, cv2.COLOR_RGB2HSV) # RGB -> HSV
yellow_mask = cv2.inRange(image_hsv, YELLOW_HSV_LOWER, YELLOW_HSV_UPPER)
white_mask = cv2.inRange(image_hsv, WHITE_HSV_LOWER, WHITE_HSV_UPPER)
both_mask = yellow_mask + white_mask
image_wk = grayscale(image_wk) # RGB -> GRAY
image_wk = cv2.bitwise_or(image_wk, both_mask) # GRAY + yellow/white mask
# Output grayscale road image with enhanced yellow/white areas
return image_wk
def detect_lane_edges(image):
''' Canny edge detection with Gaussian blur and region mask '''
GAUSS_KERNEL = 7 # must be odd <7,5>
CANNY_LOW = 100 # not an edge
CANNY_HIGH = 200 # definitely an edge
REGION_TRAP_XB = 5 # percent in horizontally from edge for bottom of trapezoid
REGION_TRAP_XT = 45 # percent in horizontally from edge for top of trapezoid
REGION_TRAP_YT = 60 # percent down vertically from edge for top of trapezoid
image_wk = np.copy(image) # working copy
# Apply Gaussian blur
image_wk = gaussian_blur(image_wk, GAUSS_KERNEL)
# Apply Canny edge detection
image_wk = canny(image_wk, CANNY_LOW, CANNY_HIGH)
# Apply trapezoidal region mask
im_y = image_wk.shape[0]
im_x = image_wk.shape[1]
trap_bl = (np.int32(REGION_TRAP_XB/100*im_x), im_y)
trap_tl = (np.int32(REGION_TRAP_XT/100*im_x), np.int32(REGION_TRAP_YT/100*im_y))
trap_tr = (im_x - np.int32(REGION_TRAP_XT/100*im_x), np.int32(REGION_TRAP_YT/100*im_y))
trap_br = (im_x - np.int32(REGION_TRAP_XB/100*im_x), im_y)
vertices = np.array([[trap_bl, trap_tl, trap_tr, trap_br]], dtype=np.int32)
image_wk = region_of_interest(image_wk, vertices)
# Output edge-detected image masked by trapezoidal region
return image_wk
def detect_lane_lines(image_edges, image_orig):
''' Raw line detection by Hough transform and classify left/right by angle '''
HOUGH_RHO = 1 # distance resolution in pixels of the Hough grid
HOUGH_THETA = np.pi/180 # angular resolution in radians of the Hough grid
HOUGH_THRESH = 15 # minimum number of votes (intersections in Hough grid cell) <15,20>
HOUGH_MIN_LEN = 40 # minimum number of pixels making up a line <40,100>
HOUGH_MAX_GAP = 100 # maximum gap in pixels between connectable line segments <100,250>
LINE_MIN_ANGLE = 20 # degrees
image_wk = np.copy(image_orig) # working copy
# Run Hough transform on edge-detected image
raw_lines = cv2.HoughLinesP(image_edges, HOUGH_RHO, HOUGH_THETA, HOUGH_THRESH, np.array([]),
HOUGH_MIN_LEN, HOUGH_MAX_GAP)
# Group lines by left/right angle and side of center line
left_lines = []
right_lines = []
x_center = np.int32((image_wk.shape[1]/2))
for line in raw_lines:
for x1, y1, x2, y2 in line:
theta = np.arctan((y2-y1)/(x2-x1)) /np.pi*180
if (theta < -LINE_MIN_ANGLE) and (x1 < x_center) and (x2 < x_center):
left_lines.append(line)
elif (theta > LINE_MIN_ANGLE) and (x1 > x_center) and (x2 > x_center):
right_lines.append(line)
# Draw raw left/right lines on road image
draw_lines(image_wk, left_lines, (255,0,255), 2)
draw_lines(image_wk, right_lines, (0,255,0), 2)
# Output road image with drawn raw lines and lists of left/right line coordinates
return (image_wk, left_lines, right_lines)
def set_lanes(left_lines, right_lines, image):
''' Set left/right lanes by weighted linear polyfit of raw lines '''
Y_LANE_EXTRAP = 35 # percent up from bottom of image to extrapolate lane lines
image_wk = np.copy(image) # working copy
image_lines = np.copy(image_wk)*0 # create a blank to draw lines on
im_y = image_wk.shape[0]
y1_lane = im_y
y2_lane = np.int32(im_y - (Y_LANE_EXTRAP/100*im_y))
# Process left lane
if left_lines:
z_left = my_linear_polyfit(left_lines)
x1_lane = np.int32( (y1_lane - z_left[1]) / z_left[0] ) # x = (y-b)/m
x2_lane = np.int32( (y2_lane - z_left[1]) / z_left[0] )
# Draw left lane on blank image
cv2.line(image_lines, (x1_lane, y1_lane), (x2_lane, y2_lane), (100,100,100), 15)
# Process right lane
if right_lines:
z_right = my_linear_polyfit(right_lines)
x1_lane = np.int32( (y1_lane - z_right[1]) / z_right[0] ) # x = (y-b)/m
x2_lane = np.int32( (y2_lane - z_right[1]) / z_right[0] )
# Draw right lane on blank image
cv2.line(image_lines, (x1_lane, y1_lane), (x2_lane, y2_lane), (100,100,100), 15)
# Overlay detected left/right lanes on road image
image_wk = weighted_img(image_lines, image_wk)
# Output road image with overlaid left/right lanes
return image_wk
def my_linear_polyfit(raw_lines):
''' Apply a linear polyfit to a set of raw line endpoints with weighting by line length '''
x = []
y = []
weight = []
# Build arrays of all x, y, and weight points
for line in raw_lines:
for x1, y1, x2, y2 in line:
x.extend([x1, x2])
y.extend([y1, y2])
line_length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
weight.extend([line_length, line_length])
# Apply weighted linear polyfit
z = np.polyfit(x, y, 1, w=weight)
# Output fit line, z = [m, b]
return z
''' My Pipeline END '''
''' Process test images and videos '''
image_list = os.listdir("test_images/")
for image_name in image_list:
if image_name.endswith(".jpg"):
image = mpimg.imread('test_images/' + image_name)
print('=== Processing', image_name, 'with dimensions', image.shape, '===\n')
# Process image through pipeline
image_out = my_lane_detection_pipeline(image, debug_images=True)
white_output = 'test_videos_output/solidWhiteRight.mp4'
clip1 = VideoFileClip("test_videos/solidWhiteRight.mp4")
white_clip = clip1.fl_image(my_lane_detection_pipeline)
white_clip.write_videofile(white_output, audio=False)
yellow_output = 'test_videos_output/solidYellowLeft.mp4'
clip2 = VideoFileClip('test_videos/solidYellowLeft.mp4')
yellow_clip = clip2.fl_image(my_lane_detection_pipeline)
yellow_clip.write_videofile(yellow_output, audio=False)
challenge_output = 'test_videos_output/challenge.mp4'
clip3 = VideoFileClip('test_videos/challenge.mp4')
challenge_clip = clip3.fl_image(my_lane_detection_pipeline)
challenge_clip.write_videofile(challenge_output, audio=False)