-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcode.cpp
executable file
·360 lines (269 loc) · 11.7 KB
/
code.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
* Wrapper on OpenPose API
* OpenPose Repo: https://github.com/CMU-Perceptual-Computing-Lab/openpose
*========================================
* Compatible commit from OpenPose Project:
* commit d80fd22c293969908ce852f32789cbdb8aa71584
* Author: Gines <gines@cmu.edu>
* Date: Tue Feb 6 12:51:20 2018 -0500
Fixed Windows bugs
*==========================================
* Code has been adapted from OpenPose project examples.
*/
#define PY_ARRAY_UNIQUE_SYMBOL pbcvt_ARRAY_API
#define USE_CAFFE
#include <gflags/gflags.h> // DEFINE_bool, DEFINE_int32, DEFINE_int64, DEFINE_uint64, DEFINE_double, DEFINE_string
#include <glog/logging.h> // google::InitGoogleLogging, CHECK, CHECK_EQ, LOG, VLOG, ...
#include <stdio.h>
#include <openpose/core/headers.hpp>
#include <openpose/filestream/headers.hpp>
#include <openpose/gui/headers.hpp>
#include <openpose/pose/headers.hpp>
#include <openpose/utilities/headers.hpp>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <pyboostcvconverter/pyboostcvconverter.hpp>
#include <boost/python.hpp>
#include <iostream>
using namespace boost::python;
DEFINE_int32(logging_level, 3, "The logging level. Integer in the range [0, 255]. 0 will output any log() message, while 255 will not output any."
" Current OpenPose library messages are in the range 0-4: 1 for low priority messages and 4 for important ones.");
// OpenPose
DEFINE_string(model_pose, "COCO", "Model to be used (e.g. COCO, MPI, MPI_4_layers).");
DEFINE_string(model_folder, "models/", "Folder where the pose models (COCO and MPI) are located.");
DEFINE_string(net_resolution, "656x368", "Multiples of 16.");
DEFINE_string(output_resolution, "1280x720", "The image resolution (display). Use \"-1x-1\" to force the program to use the default images resolution.");
DEFINE_double(scale_gap, 0.3, "Scale gap between scales. No effect unless num_scales>1. Initial scale is always 1. If you want to change the initial scale, "
"you actually want to multiply the `net_resolution` by your desired initial scale.");
DEFINE_int32(num_scales, 1, "Number of scales to average.");
// OpenPose Rendering
DEFINE_double(alpha_pose, 0.6, "Blending factor (range 0-1) for the body part rendering. 1 will show it completely, 0 will hide it.");
DEFINE_int32(scale_number, 1, "Number of scales to average.");
DEFINE_int32(num_gpu_start, 0, "GPU device start number.");
DEFINE_double(render_threshold, 0.05, "Only estimated keypoints whose score confidences are higher than this threshold will be"
" rendered. Generally, a high threshold (> 0.5) will only render very clear body parts;"
" while small thresholds (~0.1) will also output guessed and occluded keypoints, but also"
" more false positives (i.e. wrong detections).");
DEFINE_bool(disable_blending, false, "If enabled, it will render the results (keypoint skeletons or heatmaps) on a black"
" background, instead of being rendered into the original image. Related: `part_to_show`,"
" `alpha_pose`, and `alpha_pose`.");
using namespace std;
op::Point<int> outputSize;
op::Point<int> netInputSize;
//op::Point netOutputSize;
op::PoseModel poseModel;
op::CvMatToOpInput * cvMatToOpInput;
op::CvMatToOpOutput * cvMatToOpOutput;
op::PoseRenderer * poseRenderer;
op::OpOutputToCvMat * opOutputToCvMat;
op::PoseExtractorCaffe * poseExtractorCaffe;
op::FrameDisplayer * frameDisplayer;
op::ScaleAndSizeExtractor * scaleAndSizeExtractor;
bool renderOutputs = false;
cv::Mat outputImage;
void error(const char *msg)
{
perror(msg);
exit(1);
}
op::PoseModel gflagToPoseModel(const std::string& poseModeString)
{
op::log("", op::Priority::Low, __LINE__, __FUNCTION__, __FILE__);
if (poseModeString == "COCO")
return op::PoseModel::COCO_18;
else if (poseModeString == "MPI")
return op::PoseModel::MPI_15;
else if (poseModeString == "MPI_4_layers")
return op::PoseModel::MPI_15_4;
else
{
op::error("String does not correspond to any model (COCO, MPI, MPI_4_layers)", __LINE__, __FUNCTION__, __FILE__);
return op::PoseModel::COCO_18;
}
}
//// Google flags into program variables
//std::tuple<cv::Size, cv::Size, cv::Size, op::PoseModel> gflagsToOpParameters(int netWidth, int netHeight)
//{
// op::log("", op::Priority::Low, __LINE__, __FUNCTION__, __FILE__);
// // outputSize
// cv::Size outputSize;
// auto nRead = sscanf(FLAGS_resolution.c_str(), "%dx%d", &outputSize.width, &outputSize.height);
// op::checkE(nRead, 2, "Error, resolution format (" + FLAGS_resolution + ") invalid, should be e.g., 960x540 ", __LINE__, __FUNCTION__, __FILE__);
// // netInputSize
// cv::Size netInputSize;
// nRead = sscanf(FLAGS_net_resolution.c_str(), "%dx%d", &netInputSize.width, &netInputSize.height);
// netInputSize.width = netWidth;
// netInputSize.height = netHeight;
// op::checkE(nRead, 2, "Error, net resolution format (" + FLAGS_net_resolution + ") invalid, should be e.g., 656x368 (multiples of 16)", __LINE__, __FUNCTION__, __FILE__);
// // netOutputSize
// const auto netOutputSize = netInputSize;
// // poseModel
// const auto poseModel = gflagToPoseModel(FLAGS_model_pose);
// // Check no contradictory flags enabled
// if (FLAGS_alpha_pose < 0. || FLAGS_alpha_pose > 1.)
// op::error("Alpha value for blending must be in the range [0,1].", __LINE__, __FUNCTION__, __FILE__);
// if (FLAGS_scale_gap <= 0. && FLAGS_num_scales > 1)
// op::error("Uncompatible flag configuration: scale_gap must be greater than 0 or num_scales = 1.", __LINE__, __FUNCTION__, __FILE__);
// // Logging and return result
// op::log("", op::Priority::Low, __LINE__, __FUNCTION__, __FILE__);
// return std::make_tuple(outputSize, netInputSize, netOutputSize, poseModel);
//}
/**
* Initializes API
* @param renderOutputs Should OP Renderer be used to show outputs
* @param netWidth Width of net
* @param netHeight Height of net
*/
void setup(bool renderOutputs, int netWidth, int netHeight){
Py_BEGIN_ALLOW_THREADS
op::log("Here we got started!!");
if(renderOutputs){
op::log("Outputs will be rendered!");
}
else{
op::log("Outputs will NOT be rendered!");
}
op::check(0 <= FLAGS_logging_level && FLAGS_logging_level <= 255, "Wrong logging_level value.", __LINE__, __FUNCTION__, __FILE__);
op::ConfigureLog::setPriorityThreshold((op::Priority)FLAGS_logging_level);
op::log(netWidth);
op::log(netHeight);
outputSize = op::flagsToPoint(FLAGS_output_resolution, "-1x-1");
// netInputSize
netInputSize = op::flagsToPoint(FLAGS_net_resolution, "-1x368");
// poseModel
poseModel = op::flagsToPoseModel(FLAGS_model_pose);
// std::tie(outputSize, netInputSize, netOutputSize, poseModel) = gflagsToOpParameters(netWidth,netHeight);
// Step 3 - Initialize all required classes
scaleAndSizeExtractor = new op::ScaleAndSizeExtractor(netInputSize, outputSize, FLAGS_scale_number, FLAGS_scale_gap);
// cvMatToOpInput = new op::CvMatToOpInput(netInputSize, FLAGS_num_scales, (float)FLAGS_scale_gap);
// cvMatToOpOutput = new op::CvMatToOpOutput(outputSize);
cvMatToOpInput = new op::CvMatToOpInput;
cvMatToOpOutput = new op::CvMatToOpOutput;
poseExtractorCaffe = new op::PoseExtractorCaffe {poseModel, FLAGS_model_folder, FLAGS_num_gpu_start};
// poseExtractorCaffe = new op::PoseExtractorCaffe(netInputSize, netOutputSize, outputSize, FLAGS_num_scales, (float)FLAGS_scale_gap, poseModel,
// FLAGS_model_folder, FLAGS_num_gpu_start);
if(renderOutputs) {
poseRenderer = new op::PoseCpuRenderer{poseModel, (float)FLAGS_render_threshold,!FLAGS_disable_blending ,(float) FLAGS_alpha_pose};
}
opOutputToCvMat = new op::OpOutputToCvMat;
if(renderOutputs)
frameDisplayer = new op::FrameDisplayer{"OpenPose Tutorial - Example 1", outputSize};
// Step 4 - Initialize resources on desired thread (in this case single thread, i.e. we init resources here)
poseExtractorCaffe->initializationOnThread();
if(renderOutputs)
poseRenderer->initializationOnThread();
op::log("setup ended!");
Py_END_ALLOW_THREADS
}
/**
* Estimate post of input image
* @param inputImage Input image as an OpenCV Matrix
* @return
*/
cv::Mat estimatePoseMat(cv::Mat inputImage)
{
if(inputImage.empty())
op::log("Empty Image");
// Step 2 - Format input image to OpenPose input and output formats
const op::Point<int> imageSize{inputImage.cols, inputImage.rows};
std::vector<double> scaleInputToNetInputs;
std::vector<op::Point<int>> netInputSizes;
double scaleInputToOutput;
op::Point<int> outputResolution;
std::tie(scaleInputToNetInputs, netInputSizes, scaleInputToOutput, outputResolution)
= scaleAndSizeExtractor->extract(imageSize);
const auto netInputArray = cvMatToOpInput->createArray(inputImage, scaleInputToNetInputs, netInputSizes);
auto outputArray = cvMatToOpOutput->createArray(inputImage, scaleInputToOutput, outputResolution);
// Step 3 - Estimate poseKeyPoints
poseExtractorCaffe->forwardPass(netInputArray, imageSize, scaleInputToNetInputs);
const auto poseKeyPoints = poseExtractorCaffe->getPoseKeypoints();
//op::log("Pose Estimated");
int count = poseKeyPoints.getSize(0);
std::ostringstream resultBuilder;
if(renderOutputs)
{
poseRenderer->renderPose(outputArray, poseKeyPoints, scaleInputToOutput);
}
outputImage = opOutputToCvMat->formatToCvMat(outputArray);
if(count == 0)
{
return cv::Mat();
}
auto outputResult = poseKeyPoints.getConstCvMat();
//op::log("Result converted to matrix");
return outputResult;
}
/**
* Retrieve output image of OpenPose Renderer
* @return
*/
PyObject * getOutputImage()
{
PyObject *ret = pbcvt::fromMatToNDArray(outputImage);
return ret;
}
/**
* Detect persons and their poses using OpenPose Detector
* @param frame
* @return
*/
PyObject *detect(PyObject *frame)
{
PyObject *ret = 0;
cv::Mat result;
//op::log("Detect Called");
cv::Mat frameMat;;
frameMat = pbcvt::fromNDArrayToMat(frame);
//op::log("Frame Converted");
Py_BEGIN_ALLOW_THREADS
result = estimatePoseMat(frameMat);
//op::log("Estimated");
Py_END_ALLOW_THREADS
ret = pbcvt::fromMatToNDArray(result);
return ret;
}
/**
* Retrieve output width
* @return
*/
int getOutputWidth()
{
return outputImage.size[1];
}
/**
* Retrieve output height
* @return
*/
int getOutputHeight()
{
return outputImage.size[0];
}
// Initializations
#if (PY_VERSION_HEX >= 0x03000000)
static void *init_ar() {
#else
static void init_ar(){
#endif
Py_Initialize();
PyEval_InitThreads();
import_array();
return NUMPY_IMPORT_ARRAY_RETVAL;
}
/**
* Init Module
*/
BOOST_PYTHON_MODULE(libOpenPersonDetectorAPI)
{
init_ar();
//initialize converters
to_python_converter<cv::Mat,
pbcvt::matToNDArrayBoostConverter>();
pbcvt::matFromNDArrayBoostConverter();
// Initialize endpoints
def("detect", detect);
def("getOutputImage", getOutputImage);
def("getOutputWidth", getOutputWidth);
def("getOutputHeight", getOutputHeight);
def("setup", setup);
}