-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathVSCdesignpu.m
185 lines (155 loc) · 6.6 KB
/
VSCdesignpu.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
%% VSCdesign.m
% Autor: Erick F. Alves
% Date: 2020-07-03
%
% This function designs the AC-side LCL filter and DC-side RC filter
% of a grid-connected thre-phase voltage source converter (VSC). Based on
% this data, it also defines optimal controller parameters for a current
% controller on the dq0 reference frame.
%
% Parameters defined according to:
% - LCL filter
% R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A Review
% of Passive Power Filters for Three-Phase Grid-Connected Voltage-Source
% Converters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 1,
% pp. 54–69, Mar. 2016, doi: 10.1109/JESTPE.2015.2507203.
%
% R. Pena-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, and
% F. W. Fuchs, “Analysis of the Passive Damping Losses in LCL-Filter-Based
% Grid Converters,” IEEE Trans. Power Electron., vol. 28, no. 6,
% pp. 2642–2646, Jun. 2013, doi: 10.1109/TPEL.2012.2222931.
% M. Liserre, F. Blaabjerg, and A. Dell’Aquila, “Step-by-step design
% procedure for a grid-connected three-phase PWM voltage source converter,”
% International Journal of Electronics, vol. 91, no. 8, pp. 445–460,
% Aug. 2004, doi: 10.1080/00207210412331306186.
%
% - DC Link capacitor
% L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin, “AC/DC/AC PWM
% converter with reduced energy storage in the DC link,” IEEE Trans. on Ind.
% Applicat., vol. 31, no. 2, pp. 287–292, Apr. 1995, doi: 10.1109/28.370275.
%
% - Controller tuning
% J. A. Suul, M. Molinas, L. Norum, and T. Undeland, “Tuning of control
% loops for grid connected voltage source converters,” in 2008 IEEE 2nd
% International Power and Energy Conference, Johor Bahru, Malaysia,
% Dec. 2008, pp. 797–802, doi: 10.1109/PECON.2008.4762584.
%
% The function interface is the following:
% param = Required parameters for calculation
% Vbase = rated line rms voltage of the VSC [Vrms]
% Sbase = rated power of the VSC [VA]
% Vdcbase = rated DC voltage of the VSC [Vdc]
% fbase = rated grid frequency [Hz]
% fSwitch = switching frequency of the VSC [Hz]
% maxDeltaI = max current ripple on the converter side [A]
% Qlc = quality factor of the LC filter (recommended value = 3) [-]
% maxDeltaVdc = max voltage ripple on the DC link [V]
% maxDeltaP = max power imbalance supplied by the DC link [W]
% kFilter = factor for measurement cut-off frequency (recommended =
% 0.1) [-]
% designOk
% 1 = if the design was sucessful with the given parameters
% -1 = Lac > 0.1 pu -> increase fSwitch or maxDeltaI, reduce Vdcbase
% -2 = Clc > 0.05 pu -> increase fSwitch or maxDeltaI, reduce Vdcbase
% -3 = fres > 0.5 * fSwitch -> reduce fSwitch or maxDeltaI, increse Vdcbase
% -4 = fres < 0.2 * fSwitch -> increase maxDeltaI or reduce Vdcbase
% -5 = Rlc < 0.2 / ( 2 * fres * Clc) -> increase fSwitch or maxDeltaI, reduce Vdcbase
% filter = Filter parameters in engineering units
% Lac = convert,er side inductance of the AC filter [H]
% Lg = grid side inductance of the AC filter [H]
% Clc = parallel capacitance of the AC filter [F]
% Rlc = parallel resistance of the AC filter [Ohm]
% fres = resonance frequency of the AC filter [Hz]
% ctrl = PI controller parameters
% Ta = PWM and sensors time delay [s]
% kp = proportional gain [pu]
% ki = integral gain [pu/s]
% ffilt = measurement cut-off frequency [Hz]
% kvsc = VSC gain [-]
function [designOk, filter, filterpu, ctrl] = VSCdesignpu(param)
filter = {};
filterpu = {};
ctrl = {};
%% Base values
% AC
wbase = 2*pi * param.fbase;
Zbase = param.Vbase^2 / param.Sbase;
Ibase = param.Sbase / (sqrt(3) * param.Vbase);
Lbase = Zbase / wbase;
Cbase = 1 / (wbase * Zbase);
%DC
Zdcbase = param.Vdcbase^2 / param.Sbase;
Cdcbase = 1 / (wbase * Zdcbase);
%% Converter and grid side inductances
nph = 3; % number of phases
Mmax = 0.25; % maximum parametrized current ripple
% For details on how to define Mmax, see p.28 on M. D. P. Fenili, “Estudo e
% implementação de um filtro ativo paralelo monofásico de 8kVA,” Master
% Thesis, Federal University of Santa Catarina, Florianopolis, Brazil, 2007
filter.Lac = param.Vdcbase * Mmax / (nph * 2 * param.fSwitch * ...
(param.maxDeltaI * Ibase) ); % Beres et al, eq (1)
filterpu.Lac = filter.Lac / Lbase;
% Check if obtained value is valid and define the grid side inductance
if filterpu.Lac >= 0.1 % Beres et al, sec II.A, constraint 3)
designOk = -1;
return;
else
filterpu.Lg = 0.1 - filterpu.Lac;
end
filter.Lg = filterpu.Lg * Lbase;
%% AC filter capacitor and damping resistor
% Calculate the capacitor size - Liserre et al, eq (8).
filter.Clc = filter.Lac / Zbase^2;
filterpu.Clc = filter.Clc / Cbase;
% Check if size is within constraints - Beres et al, sec II.A, constraint 2)
if filterpu.Clc > 0.05
designOk = -2;
return;
end
% Calculate the resonance frequency - Liserre et al, eq (16).
c = Zbase / (2 * pi * filter.Lac);
r = filter.Lg / filter.Lac;
filter.fres = c * sqrt(1 + 1/r);
filterpu.fres = filter.fres / param.fSwitch;
% Check if resonance frequency is within range - Beres et al, sec II.B
if filter.fres > 0.5 * param.fSwitch
designOk = -3;
return;
elseif filter.fres < 0.2 * param.fSwitch
designOk = -4;
return;
end
% Calculate the damping resistor - Beres et al, eq (8)
filter.Rlc = param.Qlc * sqrt(1 / ( (1/filter.Lac + 1/filter.Lg) * filter.Clc));
filterpu.Rlc = filter.Rlc / Zbase;
% Verify if Rlc is below maxium value - Pena-Alzola et al, eq (5)
if filter.Rlc < 1 / ( 10 * pi * filter.fres * filter.Clc)
designOk = -5;
return;
end
filterpu.Rac = 0.004; % fixed value
filter.Rac = filterpu.Rac * Zbase;
%% DC link capacitor and resistor
% Calculate the DC-link capacitor - Malesani et al, eq (10)
filter.Cdc = param.maxDeltaT * param.maxDeltaP * param.Sbase / ...
(2 * param.Vdcbase^2 * param.maxDeltaVdc);
filterpu.Cdc = filter.Cdc / Cdcbase;
%filterpu.Rdc = 10;
%filter.Rdc = filterpu.Rdc * Zdcbase;
%% PI controller gains
Zbasectrl = 2/3 * Zbase;
Tsamp = 1 / param.fSwitch; % Assumes Tsamp = Tswitch
ctrl.kvsc = param.Vdcbase/ (sqrt(2/3) * param.Vbase);
ctrl.ffilt = param.kFilter * filter.fres;
% Sum of time delays - Suul et al, eq (8)
ctrl.Ta = 2 / ctrl.ffilt + 0.5 * Tsamp;
% Integral and proportional gain - Suul et al, eq (13) -> digital
Ti = filter.Lac / filter.Rac - Tsamp/2;
ctrl.kp = filter.Rac / Zbasectrl * Ti / (2 * ctrl.Ta + Tsamp);
ctrl.ki = ctrl.kp / Ti;
% Integral and proportional gain - Suul et al, eq (11) -> continuous
%Ti = filter.Lac / filter.Rac;
%ctrl.kp = filter.Rac / Zbasectrl / (2 * ctrl.Ta);
%ctrl.ki = ctrl.kp / Ti;
designOk = 0;
return