-
Notifications
You must be signed in to change notification settings - Fork 3
/
convert.py
executable file
·175 lines (136 loc) · 6.11 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import tensorflow as tf
sys.path.append("slim/datasets") #add the "datasets" directory from "slim" to the system path
import dataset_utils
# Seed for repeatability.
_RANDOM_SEED = 0
# The number of shards per dataset split.
_NUM_SHARDS = 4
class ImageReader(object):
"""Helper class that provides TensorFlow image coding utilities."""
def __init__(self):
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
def read_image_dims(self, sess, image_data):
image = self.decode_jpeg(sess, image_data)
return image.shape[0], image.shape[1]
def decode_jpeg(self, sess, image_data):
image = sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def _get_filenames_and_classes(dataset_dir):
"""Returns a list of filenames and inferred class names.
Args:
dataset_dir: A directory containing a set of subdirectories representing
class names. Each subdirectory should contain PNG or JPG encoded images.
Returns:
A list of image file paths, relative to `dataset_dir` and the list of
subdirectories, representing class names.
"""
directories = []
class_names = []
for filename in os.listdir(dataset_dir):
print(filename)
path = os.path.join(dataset_dir, filename)
if os.path.isdir(path):
directories.append(path)
class_names.append(filename)
image_filenames = []
for directory in directories:
for filename in os.listdir(directory):
path = os.path.join(directory, filename)
if path.find('.jpg') != -1:
image_filenames.append(path)
return image_filenames, sorted(class_names)
def _get_dataset_filename(dataset_dir, output_dir, split_name, shard_id):
output_filename = output_dir + 'images_%s_%05d-of-%05d.tfrecord' % (
split_name, shard_id, _NUM_SHARDS)
return output_filename
def _convert_dataset(split_name, filenames, class_names_to_ids, dataset_dir, output_dir):
"""Converts the given filenames to a TFRecord dataset.
Args:
split_name: The name of the dataset, either 'train' or 'validation'.
filenames: A list of absolute paths to png or jpg images.
class_names_to_ids: A dictionary from class names (strings) to ids
(integers).
dataset_dir: The directory where the converted datasets are stored.
"""
assert split_name in ['train', 'validation']
num_per_shard = int(math.ceil(len(filenames) / float(_NUM_SHARDS)))
with tf.Graph().as_default():
image_reader = ImageReader()
with tf.Session('') as sess:
for shard_id in range(_NUM_SHARDS):
output_filename = _get_dataset_filename(dataset_dir, output_dir, split_name, shard_id)
print (output_filename)
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
start_ndx = shard_id * num_per_shard
end_ndx = min((shard_id+1) * num_per_shard, len(filenames))
for i in range(start_ndx, end_ndx):
sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
i+1, len(filenames), shard_id))
sys.stdout.flush()
# Read the filename:
image_data = tf.gfile.FastGFile(filenames[i], 'rb').read()
height, width = image_reader.read_image_dims(sess, image_data)
class_name = os.path.basename(os.path.dirname(filenames[i]))
class_id = class_names_to_ids[class_name]
example = dataset_utils.image_to_tfexample(
image_data, b'jpg', height, width, class_id)
tfrecord_writer.write(example.SerializeToString())
sys.stdout.write('\n')
sys.stdout.flush()
def _dataset_exists(dataset_dir, output_dir):
for split_name in ['train', 'validation']:
for shard_id in range(_NUM_SHARDS):
output_filename = _get_dataset_filename(dataset_dir, output_dir, split_name, shard_id)
if not tf.gfile.Exists(output_filename):
return False
return True
if __name__ == '__main__':
if len(sys.argv) != 4:
print("The script needs three arguments.")
print("The first argument should be a directory containing a set of subdirectories representing class names. Each subdirectory should contain PNG or JPG encoded images.")
print("The second argument should be output directory.")
print("The third argument should be the percentage of images we are going to use for valdiation set (between 0 to 100)")
exit()
file_directory = sys.argv[1]
dataset_dir = file_directory
if not os.path.exists(dataset_dir):
print('The directory for dataset (i.e., "' + dataset_dir + '") does not exist.')
exit()
output_dir = sys.argv[2]
if output_dir[-1] != "/":
output_dir += "/"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
validation_percentage = (float(sys.argv[3]) / 100.0)
if not tf.gfile.Exists(dataset_dir):
tf.gfile.MakeDirs(dataset_dir)
image_filenames, class_names = _get_filenames_and_classes(dataset_dir)
_NUM_VALIDATION = int(len(image_filenames) * validation_percentage)
class_names_to_ids = dict(zip(class_names, range(len(class_names))))
# Divide into train and test:
random.seed(_RANDOM_SEED)
random.shuffle(image_filenames)
training_filenames = image_filenames[_NUM_VALIDATION:]
validation_filenames = image_filenames[:_NUM_VALIDATION]
# First, convert the training and validation sets.
_convert_dataset('train', training_filenames, class_names_to_ids,
dataset_dir, output_dir)
_convert_dataset('validation', validation_filenames, class_names_to_ids,
dataset_dir, output_dir)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names))
dataset_utils.write_label_file(labels_to_class_names, output_dir)
print('\nFinished converting dataset!')
print('The converted data is stored in the directory: "' + output_dir + '"')