-
Notifications
You must be signed in to change notification settings - Fork 0
/
data.py
177 lines (136 loc) · 6.56 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import logging
import random
import numpy
import cPickle
from picklable_itertools import iter_
from fuel.datasets import Dataset
from fuel.streams import DataStream
from fuel.schemes import IterationScheme, ConstantScheme
from fuel.transformers import Batch, Mapping, SortMapping, Unpack, Padding, Transformer
import sys
import os
logging.basicConfig(level='INFO')
logger = logging.getLogger(__name__)
class QADataset(Dataset):
def __init__(self, path, vocab_file, n_entities, need_sep_token, **kwargs):
self.provides_sources = ('context', 'question', 'answer', 'candidates')
self.path = path
self.vocab = ['@entity%d' % i for i in range(n_entities)] + \
[w.rstrip('\n') for w in open(vocab_file)] + \
['<UNK>', '@placeholder'] + \
(['<SEP>'] if need_sep_token else [])
self.n_entities = n_entities
self.vocab_size = len(self.vocab)
self.reverse_vocab = {w: i for i, w in enumerate(self.vocab)}
super(QADataset, self).__init__(**kwargs)
def to_word_id(self, w, cand_mapping):
if w in cand_mapping:
return cand_mapping[w]
elif w[:7] == '@entity':
raise ValueError("Unmapped entity token: %s"%w)
elif w in self.reverse_vocab:
return self.reverse_vocab[w]
else:
return self.reverse_vocab['<UNK>']
def to_word_ids(self, s, cand_mapping):
return numpy.array([self.to_word_id(x, cand_mapping) for x in s.split(' ')], dtype=numpy.int32)
def get_data(self, state=None, request=None):
if request is None or state is not None:
raise ValueError("Expected a request (name of a question file) and no state.")
lines = [l.rstrip('\n') for l in open(os.path.join(self.path, request))]
ctx = lines[2]
q = lines[4]
a = lines[6]
cand = [s.split(':')[0] for s in lines[8:]]
entities = range(self.n_entities)
while len(cand) > len(entities):
logger.warning("Too many entities (%d) for question: %s, using duplicate entity identifiers"
%(len(cand), request))
entities = entities + entities
random.shuffle(entities)
cand_mapping = {t: k for t, k in zip(cand, entities)}
ctx = self.to_word_ids(ctx, cand_mapping)
q = self.to_word_ids(q, cand_mapping)
cand = numpy.array([self.to_word_id(x, cand_mapping) for x in cand], dtype=numpy.int32)
a = numpy.int32(self.to_word_id(a, cand_mapping))
if not a < self.n_entities:
raise ValueError("Invalid answer token %d"%a)
if not numpy.all(cand < self.n_entities):
raise ValueError("Invalid candidate in list %s"%repr(cand))
if not numpy.all(ctx < self.vocab_size):
raise ValueError("Context word id out of bounds: %d"%int(ctx.max()))
if not numpy.all(ctx >= 0):
raise ValueError("Context word id negative: %d"%int(ctx.min()))
if not numpy.all(q < self.vocab_size):
raise ValueError("Question word id out of bounds: %d"%int(q.max()))
if not numpy.all(q >= 0):
raise ValueError("Question word id negative: %d"%int(q.min()))
return (ctx, q, a, cand)
class QAIterator(IterationScheme):
requests_examples = True
def __init__(self, path, shuffle=False, **kwargs):
self.path = path
self.shuffle = shuffle
super(QAIterator, self).__init__(**kwargs)
def get_request_iterator(self):
l = [f for f in os.listdir(self.path)
if os.path.isfile(os.path.join(self.path, f))]
if self.shuffle:
random.shuffle(l)
return iter_(l)
# -------------- DATASTREAM SETUP --------------------
class ConcatCtxAndQuestion(Transformer):
produces_examples = True
def __init__(self, stream, concat_question_before, separator_token=None, **kwargs):
assert stream.sources == ('context', 'question', 'answer', 'candidates')
self.sources = ('question', 'answer', 'candidates')
self.sep = numpy.array([separator_token] if separator_token is not None else [],
dtype=numpy.int32)
self.concat_question_before = concat_question_before
super(ConcatCtxAndQuestion, self).__init__(stream, **kwargs)
def get_data(self, request=None):
if request is not None:
raise ValueError('Unsupported: request')
ctx, q, a, cand = next(self.child_epoch_iterator)
if self.concat_question_before:
return (numpy.concatenate([q, self.sep, ctx]), a, cand)
else:
return (numpy.concatenate([ctx, self.sep, q]), a, cand)
class _balanced_batch_helper(object):
def __init__(self, key):
self.key = key
def __call__(self, data):
return data[self.key].shape[0]
def setup_datastream(path, vocab_file, config):
ds = QADataset(path, vocab_file, config.n_entities, need_sep_token=config.concat_ctx_and_question)
it = QAIterator(path, shuffle=config.shuffle_questions)
stream = DataStream(ds, iteration_scheme=it)
if config.concat_ctx_and_question:
stream = ConcatCtxAndQuestion(stream, config.concat_question_before, ds.reverse_vocab['<SEP>'])
# Sort sets of multiple batches to make batches of similar sizes
stream = Batch(stream, iteration_scheme=ConstantScheme(config.batch_size * config.sort_batch_count))
comparison = _balanced_batch_helper(stream.sources.index('question' if config.concat_ctx_and_question else 'context'))
stream = Mapping(stream, SortMapping(comparison))
stream = Unpack(stream)
stream = Batch(stream, iteration_scheme=ConstantScheme(config.batch_size))
stream = Padding(stream, mask_sources=['context', 'question', 'candidates'], mask_dtype='int32')
return ds, stream
if __name__ == "__main__":
# Test
class DummyConfig:
def __init__(self):
self.shuffle_entities = True
self.shuffle_questions = False
self.concat_ctx_and_question = False
self.concat_question_before = False
self.batch_size = 2
self.sort_batch_count = 1000
ds, stream = setup_datastream(os.path.join(os.getenv("AAIPATH"), "deepmind-qa/cnn/questions/training"),
os.path.join(os.getenv("AAIPATH"), "deepmind-qa/cnn/stats/training/vocab.txt"),
DummyConfig())
it = stream.get_epoch_iterator()
for i, d in enumerate(stream.get_epoch_iterator()):
print '--'
print d
if i > 2: break
# vim: set sts=4 ts=4 sw=4 tw=0 et :