-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_perceptron_tagger.py
97 lines (80 loc) · 3.62 KB
/
test_perceptron_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Test the Perceptron PoS Tagger in NLTK
# Elaheh Sadredini and Deyuan Guo, Feb 09, 2018
import sys
import time
from nltk.corpus import treebank, brown
from nltk.tag import PerceptronTagger
# Test the Perceptron PoS tagger with 5-fold CV
def run_test(my_corpus):
if my_corpus == treebank:
print 'Corpus Info:'
print ' Corpus: treebank'
print ' Tagged Sents:', len(my_corpus.tagged_sents())
print ' Tagged Words:', len(my_corpus.tagged_words())
my_tagged_sents = my_corpus.tagged_sents()
my_sents = my_corpus.sents()
elif my_corpus == brown:
print 'Corpus Info:'
print ' Corpus: brown'
print ' Tagged Sents:', len(my_corpus.tagged_sents())
print ' Tagged Words:', len(my_corpus.tagged_words())
print ' Tagged Sents (news):', len(my_corpus.tagged_sents(categories='news'))
print ' Tagged Words (news):', len(my_corpus.tagged_words(categories='news'))
my_tagged_sents = my_corpus.tagged_sents(categories='news')
my_sents = my_corpus.sents(categories='news')
#print ' Tagged Sents :', len(my_corpus.tagged_sents())
#print ' Tagged Words :', len(my_corpus.tagged_words())
#my_tagged_sents = my_corpus.tagged_sents()
#my_sents = my_corpus.sents()
else:
return
fold = 5
print 'Performing', fold, 'fold cross validation on corpus ...'
train_accuracy = []
test_accuracy = []
train_runtime = []
test_runtime = []
for k in range(fold):
train_data = [x for i, x in enumerate(my_tagged_sents) if i % fold != k]
validation_data = [x for i, x in enumerate(my_tagged_sents) if i % fold == k]
#test_data = [x for i, x in enumerate(my_sents) if i % fold == k]
print 'Fold', k, ' has', len(train_data), 'train sentences and', len(validation_data), 'test sentences'
perceptron_pos_tagger = PerceptronTagger(load=False)
begin = time.time()
perceptron_pos_tagger.train(train_data)
end = time.time()
train_acc = perceptron_pos_tagger.evaluate(train_data)
train_accuracy.append(train_acc)
train_runtime.append(end - begin)
print ' Train accuracy =', train_acc, ' runtime =', end - begin
begin = time.time()
test_acc = perceptron_pos_tagger.evaluate(validation_data)
end = time.time()
test_accuracy.append(test_acc)
test_runtime.append(end - begin)
print ' Test accuracy =', test_acc, ' runtime =', end - begin
print 'Results:'
print '%15s %15s %15s %15s %15s' % ('Fold', 'Train-Accuracy', 'Train-Runtime', 'Test-Accuracy', 'Test-Runtime')
for k in range(fold):
print '%15d %15.3f%% %15.5f %15.3f%% %15.5f' % (k, train_accuracy[k] * 100, train_runtime[k], test_accuracy[k] * 100, test_runtime[k])
avg_train_acc = sum(train_accuracy)/len(train_accuracy)
avg_train_runtime = sum(train_runtime)/len(train_runtime)
avg_test_acc = sum(test_accuracy)/len(test_accuracy)
avg_test_runtime = sum(test_runtime)/len(test_runtime)
print '%15s %15.3f%% %15.5f %15.3f%% %15.5f' % ('Average', avg_train_acc * 100, avg_train_runtime, avg_test_acc * 100, avg_test_runtime)
return
# Main
if __name__ == '__main__':
print 'Testing the Perceptron PoS Tagger in NLTK.'
help_msg = 'Usage: test_perceptron_tagger.py <treebank|brown>'
if len(sys.argv) != 2:
print help_msg
sys.exit(0)
if sys.argv[1] == 'treebank':
my_corpus = treebank
elif sys.argv[1] == 'brown':
my_corpus = brown
else:
print 'Unknown corpus:', sys.argv[1]
sys.exit(0)
run_test(my_corpus)