Replies: 7 comments 15 replies
-
Unnecessary multiple requests with the same esagg query (FIXED in #182919)When a search is sent to ES and a response is received, the search service is looking if the request needs a post-flight request. kibana/src/plugins/data/common/search/search_source/search_source.ts Lines 539 to 548 in 74fdd1b If needed, it transforms the response to a partial response and update the body with the postflight request.This works correctly if the postflight is actually necessary, but due to the current implementation the postflight request is always "applied" even if not needed, causing a subsequent request to be sent to ES. This results to an increase of:
Analysis kibana/src/plugins/data/common/search/search_source/search_source.ts Lines 474 to 483 in 74fdd1b This function is there even if is not required. For example in a All the other cases this is defaulted to an identity function, so the hasPostFlightRequests function will always return true. |
Beta Was this translation helpful? Give feedback.
-
|
Beta Was this translation helpful? Give feedback.
-
Beta Was this translation helpful? Give feedback.
-
Test 1 utopic baselineI've implemented the most simple HTML page that covers: fetch directly to ES, a bit of data processing, and rendering on canvas.
This time can't be achieved in Kibana but at least can be considered as the super-optimal baseline. Simple demo page<!DOCTYPE html>
<html>
<head>
<title>My Empty Page</title>
</head>
<body>
<button onclick="run()" style="position:absolute; right: 0;">RUN</button>
<canvas id="chart"></canvas>
<script>
async function run() {
const maxSeries = 1;
const canvasWidth = 1000;
const chartHeight = 200;
const canvasHeight = (chartHeight) * maxSeries;
const canvas = document.getElementById('chart');
const ctx = canvas.getContext('2d');
ctx.scale(window.devicePixelRatio, window.devicePixelRatio);
canvas.width = canvasWidth * window.devicePixelRatio;
canvas.height = canvasHeight * window.devicePixelRatio;
canvas.style.width = `${canvasWidth}px`;
canvas.style.height = `${canvasHeight}px`;
function linearScale(value, inputDomain, outputRange) {
const [inputMin, inputMax] = inputDomain;
const [outputMin, outputMax] = outputRange;
const inputRange = inputMax - inputMin;
const outputDiff = outputMax - outputMin;
const scaledValue = ((value - inputMin) / inputRange) * outputDiff + outputMin;
return scaledValue;
}
const overallTimes = [];
async function getData(i, t) {
const startDate = `2024-04-28T22:10:27.454Z`;
const endDate = `2024-05-01T21:00:48.656Z`;
const startTime = performance.now();
console.time(`Overall [${i}]`);
console.time(`Fetch [${i}]`);
const response = await fetch("http://localhost:9200/_search?max_concurrent_shard_requests=10", {
"headers": {
'Authorization': `Basic ${btoa("elastic:changeme")}`,
"content-type": "application/json",
},
"body": JSON.stringify({
"aggs": {
"byTerms": {
"terms": {
"field": "geo.dest",
"order": {
"_key": "asc"
},
"size": 30
},
"aggs": {
"byDate": {
"date_histogram": {
"field": "@timestamp",
"fixed_interval": "5m",
"time_zone": "Europe/Rome",
"extended_bounds": {
"min": new Date(startDate).valueOf(),
"max": new Date(endDate).valueOf()
}
},
"aggs": {
"avgMetric": {
"avg": {
"field": "bytes"
}
},
"maxMetric": {
"max": {
"field": "machine.ram"
}
}
}
}
}
}
},
"size": 0,
"query": {
"bool": {
"filter": [
{
"range": {
"@timestamp": {
"format": "strict_date_optional_time",
"gte": startDate,
"lte": endDate
}
}
}
]
}
}
}
),
"method": "POST",
});
console.timeLog(`Fetch [${i}]`, 'response');
const data = await response.json();
console.timeEnd(`Fetch [${i}]`);
console.log(`ES response took: ${data.took}`);
console.time(`Tabify [${i}]`);
const series = data.aggregations.byTerms.buckets.reduce((acc, bucket) => {
const { key, byDate: { buckets } } = bucket;
const seriesData = buckets.reduce((bucketAcc, d) => {
bucketAcc.dataArray.push(
{
key,
x: d.key,
maxMetric: d.maxMetric.value,
avgMetric: d.avgMetric.value,
});
bucketAcc.xDomain[0] = Math.min(bucketAcc.xDomain[0], d.key);
bucketAcc.xDomain[1] = Math.max(bucketAcc.xDomain[1], d.key);
bucketAcc.yDomain[0] = Math.min(bucketAcc.yDomain[0], d.maxMetric.value, d.avgMetric.value);
bucketAcc.yDomain[1] = Math.max(bucketAcc.yDomain[1], d.maxMetric.value, d.avgMetric.value);
return bucketAcc;
}, { dataArray: [], xDomain: [Infinity, -Infinity], yDomain: [Infinity, -Infinity] })
acc.series.set(key, seriesData.dataArray);
acc.xDomain[0] = Math.min(acc.xDomain[0], seriesData.xDomain[0]);
acc.xDomain[1] = Math.max(acc.xDomain[1], seriesData.xDomain[1]);
acc.yDomain[0] = Math.min(acc.yDomain[0], seriesData.yDomain[0]);
acc.yDomain[1] = Math.max(acc.yDomain[1], seriesData.yDomain[1]);
return acc;
}, { series: new Map(), xDomain: [Infinity, -Infinity], yDomain: [Infinity, -Infinity] });
console.timeEnd(`Tabify [${i}]`);
console.time(`Rendering [${i}]`);
// ctx.fillStyle = 'white';
// ctx.fillRect(0, 0, canvasWidth, canvasHeight);
ctx.save();
ctx.translate(0, (chartHeight) * i);
const colors = [
'#54B399',
'#6092C0',
'#9170B8',
'#CA8EAE',
'#D36086',
'#E7664C',
'#AA6556',
'#DA8B45',
'#B9A888',
'#D6BF57',
];
[...series.series.values()].forEach((s, i) => {
let firstMoveA = false;
let firstMoveB = false;
ctx.strokeStyle = colors[i % colors.length];
ctx.beginPath();
s.forEach((d, i) => {
if (d.maxMetric !== null && !firstMoveA) {
ctx.moveTo(linearScale(d.x, series.xDomain, [0, canvasWidth]), linearScale(d.maxMetric, series.yDomain, [chartHeight, 0]));
firstMoveA = true;
} else if (d.maxMetric !== null && firstMoveA) {
ctx.lineTo(linearScale(d.x, series.xDomain, [0, canvasWidth]), linearScale(d.maxMetric, series.yDomain, [chartHeight, 0]));
}
});
ctx.stroke();
ctx.beginPath();
s.forEach((d, i) => {
if (d.avgMetric !== null && !firstMoveB) {
ctx.moveTo(linearScale(d.x, series.xDomain, [0, canvasWidth]), linearScale(d.avgMetric, series.yDomain, [chartHeight, 0]));
firstMoveA = true;
} else if (d.avgMetric !== null && firstMoveB) {
ctx.lineTo(linearScale(d.x, series.xDomain, [0, canvasWidth]), linearScale(d.avgMetric, series.yDomain, [chartHeight, 0]));
}
});
ctx.stroke();
});
ctx.restore();
console.timeEnd(`Rendering [${i}]`);
console.timeEnd(`Overall [${i}]`);
console.log(`-------`);
overallTimes.push(performance.now() - startTime);
}
console.time('Total time parallel');
const requests = Array.from({ length: maxSeries }, (d, i) => getData(i));
await Promise.all(requests);
console.timeEnd('Total time parallel');
// console.time('Total time sequential');
// for(let i = 0; i < maxSeries; i++) {
// await getData(i, 0);
// }
// console.timeEnd('Total time sequential');
console.log(`Overall avg time: ${overallTimes.reduce((s, c) => { s += c; return s }, 0) / overallTimes.length}ms`);
}
</script>
</body>
</html> |
Beta Was this translation helpful? Give feedback.
-
Beta Was this translation helpful? Give feedback.
-
Polling searchAs described earlier, we have a polling mechanism that is used to check for search completion when using async searches. kibana/src/plugins/data/common/search/poll_search.ts Lines 20 to 35 in b8d8c73 Could be interesting knowing how many HTTP open connection we can keep between the ES and Kibana server and between the Kibana server and the client so we can use server-side push or just keep a long living tunnel to receive the ES responses without any polling mechanism in place. |
Beta Was this translation helpful? Give feedback.
-
Here are comments on the identified performance bottlenecks and potential improvements:
General Recommendations:
Addressing these areas should help significantly improve performance for large datasets and complex visualizations. |
Beta Was this translation helpful? Give feedback.
-
I will add here some of the findings related to performance bottlenecks the current Lens/SearchStrategy architecture and possible improvements to these solutions.
Please add comments on each of these findings, or add new ones if you found something that is worth considering as performance improvement
Current Test environment and parameters:
Test 1: single chart with date_histogram and terms aggregation
ES running on a single node locally on M1 Max Mac.
10M documents
ingested inside ESbreakdown by
30 series
(noother
)date_histogram over
3 days
at with buckets every5 minutes
:~864 date buckets per series
a total of
864 * 30 data points
(counting also empty buckets):~26k data points
Panel JSON
ES query
Profile file
Profiling results with hot ES cache and client cache from a click of the refresh button to render-complete event
The overall process takes ~ 1.2seconds to complete.
~60ms between the click event and the call to the fetch function. Looks like most time is spent on:
dashboard: forceRefresh
, onembeddable: setInitializationFinished
and onlens: renderUserMessages
.~550ms from fetch request to tabified data. As described in #182551 (comment) and #182551 (comment) we have a fetch request due to mentioned reasons.
~650ms A long time is spent on Elastic-charts to compute the geometries to render. We can probably skip this passage, avoid generating geometries objects, and render the values directly, but require an alternative method to detect geometries under the mouse cursor.
Beta Was this translation helpful? Give feedback.
All reactions