forked from ICB-DCM/PESTO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollectResults.m
125 lines (117 loc) · 4.06 KB
/
collectResults.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function obj = collectResults(foldername)
% collectResults() collects and plots the results stored in a common folder
%
% USAGE:
% [parameters] = collectResults(foldername)
%
% Parameters:
% foldername: Name of folder from which results are collected.
%
% Return values:
% parameters: parameter struct.
%
% History:
% 2014/06/12 Jan Hasenauer
%% Initialization
warning off;
try
init = load(fullfile(foldername,'init'),'parameters');
obj = init.parameters;
type = 'parameters';
catch
init = load(fullfile(foldername,'init'),'properties');
obj = init.properties;
type = 'properties';
end
warning on;
%% Collection of data
files = dir(fullfile(foldername,'*.csv'));
ntheta = size(init.parameters.MS.par0,1);
nstarts = size(init.parameters.MS.par0,2);
obj.MS.logPost = NaN(nstarts,1);
obj.MS.logPost0 = NaN(nstarts,1);
obj.MS.par = NaN(ntheta,nstarts);
obj.MS.par0 = NaN(ntheta,nstarts);
obj.MS.gradient = NaN(ntheta,nstarts);
obj.MS.hessian = NaN(ntheta,ntheta,nstarts);
obj.MS.t_cpu = NaN(nstarts,1);
obj.MS.n_objfun = NaN(nstarts,1);
obj.MS.n_iter = NaN(nstarts,1);
obj.MS.exitflag = NaN(nstarts,1);
% should do this for prop and prop_Sigma aswell, but what are the dimensions?
% Loop: files
for j = 1:length(files)
% Read file
v = csvread(fullfile(foldername,files(j).name));
% Determine index and fieldname
fn1 = files(j).name(1);
fn2 = files(j).name((strfind(files(j).name,'__')+2):(length(files(j).name)-4));
% Assignment
switch fn1
case 'M' % -> Multi-start optimization results
i = str2num(files(j).name(3:(strfind(files(j).name,'__')-1)));
switch fn2
case 'logPost', obj.MS.logPost(i,1) = v;
case 'logPost0', obj.MS.logPost0(i,1) = v;
case 'par', obj.MS.par(:,i) = v;
case 'par0', obj.MS.par0(:,i) = v;
case 'gradient', obj.MS.gradient(:,i) = v;
case 'hessian', obj.MS.hessian(:,:,i) = v;
case 't_cpu', obj.MS.t_cpu(i,1) = v;
case 'n_objfun', obj.MS.n_objfun(i,1) = v;
case 'n_iter', obj.MS.n_iter(i,1) = v;
case 'exitflag', obj.MS.exitflag(i,1) = v;
case 'prop', obj.MS.prop(:,i) = v;
case 'prop_Sigma', obj.MS.prop_Sigma(:,:,i) = v;
case 'fval_trace'
if(~isfield(obj.MS,'fval_trace'))
obj.MS.fval_trace = NaN(size(v,1),nstarts);
end
obj.MS.fval_trace(:,i) = v;
case 'time_trace'
if(~isfield(obj.MS,'time_trace'))
obj.MS.time_trace = NaN(size(v,1),nstarts);
end
obj.MS.time_trace(:,i) = v;
case 'par_trace'
if(~isfield(obj.MS,'par_trace'))
obj.MS.par_trace = NaN(ntheta,size(v,2),nstarts);
end
obj.MS.par_trace(:,:,i) = v;
end
case 'P' % -> Profile calculation results
i = str2num(files(j).name(2:(strfind(files(j).name,'__')-1)));
switch fn2
case 'par', obj.P(i).par = v;
case 'logPost', obj.P(i).logPost = v;
case 'R', obj.P(i).R = v;
case 'exitflag', obj.P(i).exitflag = v;
case 'prop', obj.P(i).prop = v;
end
end
end
%% Sort and save results
switch type
case 'parameters'
parameters = sortMultiStarts(obj);
save(fullfile(foldername,['parameters_' foldername]),'parameters');
obj = parameters;
end
%% Visualization
switch type
case 'parameters'
if isfield(obj,'MS')
disp(['progress of MS = ' num2str(100*sum(~isnan(obj.MS.par(1,:)))/nstarts) '%']);
plotMultiStarts(obj);
end
if isfield(obj,'P')
plotParameterProfiles(obj);
end
case 'properties'
if isfield(obj,'MS')
plotPropertyMultiStarts(obj);
end
if isfield(obj,'P')
plotPropertyProfiles(obj);
end
end