forked from ICB-DCM/PESTO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotMultiStartDiagnosis.m
213 lines (187 loc) · 6.42 KB
/
plotMultiStartDiagnosis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
% plotMultiStartRunTimes plots the distributions of comutation time,
% iterations and objective function evaluations of the result of the
% multi-start optimization stored in parameters
%
% USAGE:
% ======
% fh = plotMultiStartRunTimes(parameters)
% fh = plotMultiStartRunTimes(parameters,fh,options)
%
% INPUTS:
% =======
% parameters ... parameter struct containing information about parameters
% and log-posterior.about
% fh ... handle of figure in which distributions are plotted. If no
% figure handle is provided, a new figure is opened.
% options ... options of plotting
% .title ... switches plot title off (default = 'off').
% .col ... colors used for the different histograms, has to be a 3x3 matrix
% (default: grey = [0.4286,0.4286,0.4286;
% 0.5714,0.5714,0.5714;
% 0.7143,0.7143,0.7143];).
%
% Outputs:
% ========
% fh .. figure handle
function fh = plotMultiStartDiagnosis(varargin)
%% CHECK AND ASSIGN INPUTS
%Assign parameters
if nargin >= 1
parameters = varargin{1};
else
error('plotMultiStartRunTimes requires a parameter object as input.');
end
%Open figure
if nargin >= 2
if ~isempty(varargin{2})
fh = figure(varargin{2});
else
fh = figure;
end
else
fh = figure;
end
% Options
options.title = 'off';
options.col = [0.2081,0.1663,0.5292;
0.1986,0.7214,0.6310;
0.9763,0.9831,0.0538];
if nargin == 3
options = setdefault(varargin{3},options);
end
%% SORT RESULTS
[parameters] = sortMultiStarts(parameters);
%% PLOT DISTRIBUTION COMPUTATION TIME
subplot(3,3,9)
cpu_time_runs = parameters.MS.t_cpu;
cpu_time_runs(cpu_time_runs == 0) = NaN;
getHistogram(cpu_time_runs/60,options.col(2,:),{'cpu time single start [min]'},[])
if strcmp(options.title,'on')
title({'CPU time per'; 'optimization'});
end
%% PLOT DISTRIBUTION ITERATIONS
subplot(3,3,3)
getHistogram(parameters.MS.n_iter,options.col(2,:),{'objective function'; 'iterations single start'},[])
if strcmp(options.title,'on')
title({'Number of iterations'; 'per optimization'});
end
%% PLOT DISTRIBUTION OBJECTIVE FUNCTION EVALUATIONS
subplot(3,3,6)
if isfield(options,'bounds')
limits_x = [options.bounds.min(3),options.bounds.max(3)];
else
limits_x = [];
end
getHistogram(parameters.MS.n_objfun,options.col(3,:),{'objective function'; 'evaluations single start'},[])
if strcmp(options.title,'on')
title({'Number of objective function'; 'evaluations per optimization'});
end
%% PLOT logPost
subplot(3,3,1)
startidx = 1:parameters.MS.n_starts;
if(isfield(parameters.MS,'fval_trace'));
min_fval = transpose(min(parameters.MS.fval_trace));
minLP = min(min_fval);
plot(startidx(isnan(parameters.MS.logPost)),min_fval(isnan(parameters.MS.logPost))-minLP+1,'rx')
hold on
else
minLP = min(-parameters.MS.logPost);
end
plot(startidx,-parameters.MS.logPost-minLP+1,'k.')
xlim([0,parameters.MS.n_starts])
xlabel('start index')
ylabel('-logPost+min(logPost)+1')
set(gca,'YScale','log')
lim_y = get(gca,'YLim');
lim_y(1) = 10^(-0.5);
ylim(lim_y);
%% PLOT FMINCON EXITFLAG
if(isfield(parameters.MS,'exitflag'))
subplot(3,3,4)
eflag = parameters.MS.exitflag;
eflag(eflag>3) = -2;
eflag(eflag<-2) = -2;
plot(1:parameters.MS.n_starts,eflag,'k.')
unfinished = NaN(size(eflag));
unfinished(isnan(parameters.MS.logPost)) = 4;
hold on
plot(1:parameters.MS.n_starts,unfinished,'rx')
set(gca,'YTick',-2:4)
set(gca,'YTickLabel',{'other','output fcn','feval/iter','gradient','change in x','change in f','not finished'})
xlabel('start index')
ylabel('stopping condition')
xlim([0,parameters.MS.n_starts])
ylim([-2.5,4.5])
end
%% PLOT FMINCON Gradient
if(isfield(parameters.MS,'gradient'))
subplot(3,3,7)
ngrad = sqrt(sum(parameters.MS.gradient.^2));
plot(1:parameters.MS.n_starts,ngrad,'k.')
set(gca,'YScale','log')
xlabel('start index')
ylabel('norm of gradient')
xlim([0,parameters.MS.n_starts])
end
%% PLOT fval_trace
if(isfield(parameters.MS,'fval_trace'))
subplot(3,3,2)
getLinePlot(parameters.MS.fval_trace,~isnan(parameters.MS.logPost))
xlabel('iteration')
ylabel('-logPost+min(logPost)+1')
set(gca,'YScale','log')
end
%% PLOT diff par_trace
if(isfield(parameters.MS,'par_trace'))
subplot(3,3,5)
par_step = permute(sqrt(sum(diff(parameters.MS.par_trace,1,2).^2,1)),[2,3,1]);
getLinePlot([NaN(1,size(par_step,2));par_step],~isnan(parameters.MS.logPost))
xlabel('iteration')
ylabel('norm of parameter step')
set(gca,'YScale','log')
end
%% PLOT time_trace
if(isfield(parameters.MS,'time_trace'))
subplot(3,3,8)
getLinePlot(parameters.MS.time_trace/60,~isnan(parameters.MS.logPost))
xlabel('iteration')
ylabel('computation time [min]')
end
end
function getHistogram(x,color,xlbl,limx)
if(any(~isnan(x)))
logx = log10(x);
nbin = getBins(logx,'optimal');
[N,X] = hist(logx,nbin);
he = bar(X,N,1.0,'FaceColor',color);
ylim([0,max(he.YData)+1]);
ylabel('count');
if(isempty(limx))
limx = [min(logx)-0.5,max(logx)+0.5];
end
xlim(limx);
xlabel(xlbl);
xticks = get(gca,'XTick');
while length(xticks)>5
xticks = xticks(1:2:end);
end
set(gca,'XTick',xticks);
set(gca,'XTickLabel',arrayfun(@(x) ['10^{' num2str(x) '}'],get(gca,'XTick'),'UniformOutput',false));
end
end
function getLinePlot(y,group)
nmaxiter = size(y,1);
l1 = plot(1:nmaxiter,y(:,group),'k-');
if(any(any(~isnan(y(:,not(group))))))
hold on
l2 = plot(transpose(1:nmaxiter),y(:,not(group)),'r-');
legend([l1(1),l2(1)],{'finished start','unfinished start'},'Location','best')
setLineTransparency(l2,0.2);
end
setLineTransparency(l1,0.4);
end
function setLineTransparency(lines,trans)
for il = 1:length(lines)
lines(il).Color(4) = trans;
end
end