Skip to content

Commit

Permalink
MNT: fix numpy and scipy deprecations
Browse files Browse the repository at this point in the history
For scipy 1.14 and numpy 2.0
  • Loading branch information
elcorto committed Jul 7, 2024
1 parent 97267db commit 70bb5d0
Show file tree
Hide file tree
Showing 9 changed files with 36 additions and 36 deletions.
4 changes: 2 additions & 2 deletions bin/matdyn2fqha.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,14 +34,14 @@

import sys
import numpy as np
from scipy.integrate import simps
from scipy.integrate import simpson as simps

filename = sys.argv[1]
arr = np.loadtxt(filename)
freq = arr[:,0]
dos = arr[:,1]

integral = simps(dos, freq)
integral = simps(dos, x=freq)

natom = integral / 3.
nstep = len(freq)
Expand Down
8 changes: 4 additions & 4 deletions src/pwtools/num.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
from math import sqrt, sin, cos, radians, pi
import scipy.optimize as optimize
from scipy.interpolate import bisplrep, bisplev, splev, splrep
from scipy.integrate import simps
from scipy.integrate import simpson as simps
from pwtools import _flib
import warnings

Expand Down Expand Up @@ -87,7 +87,7 @@ def norm_int(y, x, area=1.0, scale=True, func=simps):
different scales.
func : callable
Function to do integration (like scipy.integrate.{simps,trapz,...}
Called as ``func(y,x)``. Default: simps
Called as ``func(y,x=x)``. Default: simps
Returns
-------
Expand All @@ -107,7 +107,7 @@ def norm_int(y, x, area=1.0, scale=True, func=simps):
fx = fy = 1.0
sx, sy = x, y
# Area under unscaled y(x).
_area = func(sy, sx) * fx * fy
_area = func(sy, x=sx) * fx * fy
return y * area / _area


Expand Down Expand Up @@ -1097,7 +1097,7 @@ def a2_to_an(self):
a = np.unique(self.a2[:, colidx])
axes.append(a)
dims.append(len(a))
assert np.product(dims) == self.a2.shape[0]
assert np.prod(dims) == self.a2.shape[0]
idx = itertools.product(*tuple(map(range, dims)))
an = np.empty(dims, dtype=self.a2.dtype)
# an[1,2,3] == an[(1,2,3)], need way to eliminate loop over index array
Expand Down
3 changes: 1 addition & 2 deletions src/pwtools/pydos.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,7 @@
import os, warnings
import numpy as np
from scipy.fftpack import fft
from scipy.signal import convolve, gaussian
from pwtools import constants, _flib, num
from pwtools import _flib, num
from pwtools.verbose import verbose
from pwtools.signal import pad_zeros, welch, mirror

Expand Down
39 changes: 20 additions & 19 deletions src/pwtools/signal.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,7 @@
from itertools import product
import numpy as np
from scipy.fftpack import fft, ifft
from scipy.signal import fftconvolve, gaussian, kaiserord, firwin, lfilter, freqz
from scipy.integrate import trapz
from scipy.signal import fftconvolve, kaiserord, firwin, lfilter, freqz
from pwtools import _flib, num


Expand Down Expand Up @@ -300,7 +299,7 @@ def pad_zeros(arr, axis=0, where='end', nadd=None, upto=None, tonext=None,

def welch(M, sym=1):
"""Welch window. Function skeleton shamelessly stolen from
scipy.signal.bartlett() and others."""
scipy.signal.windows.bartlett() and others."""
if M < 1:
return np.array([])
if M == 1:
Expand All @@ -316,7 +315,7 @@ def welch(M, sym=1):

def lorentz(M, std=1.0, sym=True):
r"""Lorentz window (same as Cauchy function). Function skeleton stolen from
scipy.signal.gaussian().
scipy.signal.windows.gaussian().
The Lorentz function is
Expand Down Expand Up @@ -621,44 +620,46 @@ def smooth(data, kern, axis=0, edge='m', norm=True):
Examples
--------
>>> from pwtools.signal import welch
>>> from pwtools.signal import welch, smooth
>>> from numpy.random import rand
>>> from scipy.signal.windows import hann, gaussian
>>> from scipy.signal import convolve
>>> x = linspace(0,2*pi,500); a=cos(x)+rand(500)
>>> plot(a, color='0.7')
>>> k=scipy.signal.hann(21)
>>> plot(signal.smooth(a,k), 'r', label='hann')
>>> k=scipy.signal.gaussian(21, 3)
>>> plot(signal.smooth(a,k), 'g', label='gauss')
>>> k=hann(21)
>>> plot(smooth(a,k), 'r', label='hann')
>>> k=gaussian(21, 3)
>>> plot(smooth(a,k), 'g', label='gauss')
>>> k=welch(21)
>>> plot(signal.smooth(a,k), 'y', label='welch')
>>> plot(smooth(a,k), 'y', label='welch')
>>> legend()
>>> # odd kernel [0,1,0] reproduces data exactly, i.e. convolution with
>>> # delta peak
>>> figure(); title('smooth with delta [0,1,0]')
>>> x=linspace(0,2*pi,15); k=scipy.signal.hann(3)
>>> plot(cos(x))
>>> plot(signal.smooth(cos(x),k), 'r')
>>> plot(smooth(cos(x),k), 'r')
>>> legend()
>>> # edge effects with normal convolution
>>> figure(); title('edge effects')
>>> x=rand(20)+10; k=scipy.signal.hann(11);
>>> plot(x); plot(signal.smooth(x,k),label="smooth");
>>> plot(scipy.signal.convolve(x,k/k.sum(),'same'), label='convolve')
>>> x=rand(20)+10; k=hann(11);
>>> plot(x); plot(smooth(x,k),label="smooth");
>>> plot(convolve(x,k/k.sum(),'same'), label='convolve')
>>> legend()
>>> # edge effect methods
>>> figure(); title('edge effect methods')
>>> x=rand(20)+10; k=scipy.signal.hann(20);
>>> plot(x); plot(signal.smooth(x,k,edge='m'),label="edge='m'");
>>> plot(signal.smooth(x,k,edge='c'),label="edge='c'");
>>> x=rand(20)+10; k=hann(20);
>>> plot(x); plot(smooth(x,k,edge='m'),label="edge='m'");
>>> plot(smooth(x,k,edge='c'),label="edge='c'");
>>> legend()
>>> # smooth a trajectory of atomic coordinates
>>> figure(); title('trajectory')
>>> x = linspace(0,2*pi,500)
>>> a = rand(500,2,3) # (nstep, natoms, 3)
>>> a[:,0,:] += cos(x)[:,None]
>>> a[:,1,:] += sin(x)[:,None]
>>> k=scipy.signal.hann(21)[:,None,None]
>>> y = signal.smooth(a,k)
>>> k=hann(21)[:,None,None]
>>> y = smooth(a,k)
>>> plot(a[:,0,0], color='0.7'); plot(y[:,0,0],'b',
... label='atom1 x')
>>> plot(a[:,1,0], color='0.7'); plot(y[:,1,0],'r',
Expand Down
6 changes: 3 additions & 3 deletions src/pwtools/thermo.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import warnings

import numpy as np
from scipy.integrate import simps, trapz
from scipy.integrate import trapezoid as trapz
from pwtools.constants import kb, hplanck, R, pi, c0, Ry_to_J, eV,\
eV_by_Ang3_to_GPa
from pwtools.verbose import verbose
Expand Down Expand Up @@ -48,7 +48,7 @@ def __init__(self, freq, dos, T=None, temp=None, skipfreq=False,
If not None, then re-normalize the area int(freq) dos to `dosarea`,
after `skipfreq` was applied if used.
integrator : callable
Function which integrates x-y data. Called as ``integrator(y,x)``,
Function which integrates x-y data. Called as ``integrator(y,x=x)``,
like ``scipy.integrate.{trapz,simps}``. Usually, `trapz` is
numerically more stable for weird DOS data and accurate enough if
the frequency axis resolution is good.
Expand Down Expand Up @@ -158,7 +158,7 @@ def _norm_int(self, y, x, area):
fy = np.abs(y).max()
sx = x / fx
sy = y / fy
_area = self.integrator(sy, sx) * fx * fy
_area = self.integrator(sy, x=sx) * fx * fy
return y*area/_area

def _printwarn(self, msg):
Expand Down
4 changes: 2 additions & 2 deletions test/test_norm_int.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import numpy as np
from scipy.integrate import simps
from scipy.integrate import simpson as simps
from pwtools.num import norm_int

def test_norm_int():
Expand All @@ -9,4 +9,4 @@ def test_norm_int():

for scale in [True, False]:
yy = norm_int(y, x, area=10.0, scale=scale)
assert np.allclose(simps(yy,x), 10.0)
assert np.allclose(simps(yy,x=x), 10.0)
4 changes: 2 additions & 2 deletions test/test_qha.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
import numpy as np
from numpy.testing import assert_array_almost_equal as aaae

from scipy.integrate import simps, trapz
from scipy.integrate import simpson as simps
from pwtools.thermo import HarmonicThermo
from pwtools import common
from pwtools.constants import Ry_to_J, eV, Ry, kb
Expand Down Expand Up @@ -91,4 +91,4 @@ def test_qha():
area = np.random.rand()*10
ha = HarmonicThermo(pdos[:,0], pdos[:,1], skipfreq=True, dosarea=area,
integrator=simps)
assert np.allclose(simps(ha.dos, ha.f), area)
assert np.allclose(simps(ha.dos, x=ha.f), area)
2 changes: 1 addition & 1 deletion test/test_signal.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import numpy as np
from scipy.signal import gaussian
from scipy.signal.windows import gaussian
from pwtools.signal import gauss, find_peaks, smooth, fft_1d_loop, ezfft
from pwtools import signal
from scipy.fftpack import fft
Expand Down
2 changes: 1 addition & 1 deletion test/test_trajectory.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import copy

import numpy as np
from scipy.signal import hann
from scipy.signal.windows import hann

from pwtools.crys import Trajectory, Structure
from pwtools import crys, constants
Expand Down

0 comments on commit 70bb5d0

Please sign in to comment.