-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_homography.py
650 lines (562 loc) · 23.6 KB
/
my_homography.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
from __future__ import print_function
from PIL import Image
import numpy as np
import cv2.cv2
from matplotlib import pyplot as plt
import os
import random
from scipy import interpolate
from blending import blender
def plot_images(images, title):
fig, axes = plt.subplots(1, len(images), figsize=(12, 2.5))
fig.suptitle(title)
for i in range(len(images)):
# axes[idx].title.set_text()
axes[i].imshow(images[i])
axes[i].set_xticks([])
axes[i].set_yticks([])
plt.show()
def convert_PIL_to_cv2(PILimage):
pil_image = PILimage.convert('RGB')
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def read_images(path):
"""
:param path: path of folder
:return: list of images
"""
files = os.listdir(path)
pics = []
for i in range(len(files)):
pics.append(Image.open(path + "/" + str(i) + files[i][-4:]))
return pics
# Extra functions end
# HW functions:
def getPoints(im1, im2, N):
plt.figure()
plt.imshow(im1)
p1 = plt.ginput(N, timeout=150)
plt.close()
print(p1)
plt.figure()
plt.imshow(im2)
p2 = plt.ginput(N, timeout=150)
plt.close()
return np.asarray(p1).T, np.asarray(p2).T
def computeH(list1, list2):
list1 = list1.T
list2 = list2.T
A = np.zeros([len(list1) * 2, 9])
x = 0
# compute matrix A
for i in range(len(list1)):
A[x, 0] = list1[i][0]
A[x, 1] = list1[i][1]
A[x, 2] = 1
A[x, 6] = -list1[i][0] * list2[i][0]
A[x, 7] = -list1[i][1] * list2[i][0]
A[x, 8] = -list2[i][0]
A[x + 1][3] = list1[i][0]
A[x + 1][4] = list1[i][1]
A[x + 1][5] = 1
A[x + 1][6] = -list1[i][0] * list2[i][1]
A[x + 1][7] = -list1[i][1] * list2[i][1]
A[x + 1][8] = -list2[i][1]
x = x + 2
[U, S, V] = np.linalg.svd(A, False)
m = V.T[:, -1]
H2to1 = np.reshape(m, (3, 3))
H2to1 = H2to1
return H2to1
def check_homography(points1, points2, im1, im2, title):
for p1, p2 in zip(points1.T, points2.T):
# color = np.random.choice(range(255),size=3)
color = np.random.randint(0, 255, (1, 3))
color = (list(np.random.choice(range(256), size=3)))
color = [int(color[0]), int(color[1]), int(color[2])]
cv2.circle(im1, tuple((int(p1[1]), int(p1[0]))), 10, color, -1)
cv2.circle(im2, tuple((int(p2[0]), int(p2[1]))), 10, color, -1)
images = [im1, im2]
plot_images(images, title)
return im1, im2
def check_homography_calculate(points1, points2, im1, im2, title):
for p1, p2 in zip(points1.T, points2.T):
# color = np.random.choice(range(255),size=3)
color = np.random.randint(0, 255, (1, 3))
color = (list(np.random.choice(range(256), size=3)))
color = [int(color[0]), int(color[1]), int(color[2])]
cv2.circle(im1, tuple((int(p1[0]), int(p1[1]))), 5, color, -1)
cv2.circle(im2, tuple((int(p2[0]), int(p2[1]))), 5, color, -1)
images = [im1, im2]
plot_images(images, title)
return im1, im2
def calculate_size(size_image1, size_image2, H):
corners = np.array([[0, 0, 1],
[0, size_image1[0], 1],
[size_image1[1], size_image1[0], 1],
[size_image1[1], 0, 1]])
points = []
points = np.zeros((8, 2))
for i in range(len(corners)):
x, y, z = np.dot(((H)), np.array([[corners[i][0]], [corners[i][1]], [1]]))
pixel_x, pixel_y = [int(x / z), int(y / z)]
points[i][0] = pixel_x
points[i][1] = pixel_y
points[4] = [0, 0]
points[5] = [0, size_image2[0]]
points[6] = [size_image2[1], size_image2[0]]
points[7] = [size_image2[1], 0]
min_axisX = min(points[:, 0])
max_axisX = max(points[:, 0])
min_axisY = min(points[:, 1])
max_axisY = max(points[:, 1])
offset_x = 0
offset_y = 0
if min_axisX < 0:
offset_x = abs(min_axisX)
if min_axisY < 0:
offset_y = abs(min_axisY)
width_X = abs(min_axisX) + max_axisX
length_Y = abs(min_axisY) + max_axisY
offset = int(offset_x), int(offset_y)
panorma_size = int(width_X), int(length_Y)
T = np.identity(3)
T[0][2] = offset[0]
T[1][2] = offset[1]
# calculate the new H matrixs
H = np.dot(T, H)
return offset, panorma_size, H
def cell_neighbors(i, j, img):
x = np.array((i - 1, i - 1, i - 1, i, i + 1, i + 1, i + 1, i))
y = np.array((j - 1, j, j + 1, j + 1, j + 1, j, j - 1, j - 1))
z = []
for i in range(len(x)):
try:
z.append(img[x[i],y[i]])
except:
z.append(img[i,j])
return x,y,z
# def get_colors_for_interpolate(xx,yy):
# colors = np.zeros((len(xx),len(yy)))
# for i in range(len(xx)):
# for j in range()
def warpH(im1, H, out_size):
print("warpH")
xx, yy = np.meshgrid(np.arange(0,im1.shape[1]), np.arange(0,im1.shape[0]))
interpolate_r = interpolate.interp2d(np.arange(0, im1.shape[1]), np.arange(0, im1.shape[0]), im1[yy, xx][:, :, 0], kind='linear')
interpolate_g = interpolate.interp2d(np.arange(0, im1.shape[1]), np.arange(0, im1.shape[0]), im1[yy, xx][:, :, 1], kind='linear')
interpolate_b = interpolate.interp2d(np.arange(0, im1.shape[1]), np.arange(0, im1.shape[0]), im1[yy, xx][:, :, 2], kind='linear')
# warp_im1 = cv2.warpPerspective(im1, H, out_size)
warp_im1 = np.zeros([out_size[1], out_size[0], 3], dtype=np.uint8)
for i in range(1, out_size[0]):
for j in range(1, out_size[1]):
x, y, z = np.dot(np.linalg.inv(H), np.array([[i], [j], [1]]))
if x/z >= 0 and x/z < (len(im1[0])) and y/z >= 0 and y/z < (len(im1)):
warp_im1[j, i] = [int(interpolate_r(x/z, y/z)[0]),int(interpolate_g(x/z, y/z)[0]),int(interpolate_b(x/z, y/z)[0])]
return warp_im1
def imageStitching(img1, wrap_img2, offset):
print("imageStitching")
panoImg = wrap_img2
(h1, w1) = img1.shape[:2]
for h in range(h1):
for w in range(w1):
if img1[h][w][0] != 0 or img1[h][w][1] != 0 or img1[h][w][2] != 0:
try:
panoImg[h + int(offset[1])][w + int(offset[0])] = img1[h][w]
except:
pass
return panoImg
def imageStitching_for_blender(img1, wrap_img2, offset):
print("imageStitching")
panoImg = np.zeros((wrap_img2.shape[0],wrap_img2.shape[1],3),dtype=np.uint8)
(h1, w1) = img1.shape[:2]
for h in range(h1):
for w in range(w1):
if img1[h][w][0] != 0 or img1[h][w][1] != 0 or img1[h][w][2] != 0:
try:
panoImg[h + int(offset[1])][w + int(offset[0])] = img1[h][w]
except:
pass
return panoImg
def ransacH(p1, p2, nIter, tol):
maxInliers = []
bestH = None
best_inliers_p1 = None
best_inliers_p2 = None
for i in range(nIter):
# find 4 random points to calculate a homography
rand_number = random.sample(range(0, len(p1[0])), 4)
list1 = np.asarray(
[p1[:, rand_number[0]], p1[:, rand_number[1]], p1[:, rand_number[2]], p1[:, rand_number[3]]]).T
list2 = np.asarray(
[p2[:, rand_number[0]], p2[:, rand_number[1]], p2[:, rand_number[2]], p2[:, rand_number[3]]]).T
# call the homography function on those points
h = computeH(list1, list2)
inliers = []
inliers_p1 = []
inliers_p2 = []
for ind in range(len(p1[0])):
d = geometricDistance(p1.T[ind], p2.T[ind], h)
if d < 5:
inliers.append(1)
inliers_p1.append(p1.T[ind])
inliers_p2.append(p2.T[ind])
# print(len(inliers))
if len(inliers) > len(maxInliers):
maxInliers = inliers
best_inliers_p1 = np.asarray(inliers_p1).T
best_inliers_p2 = np.asarray(inliers_p2).T
bestH = computeH(np.asarray(inliers_p1).T, np.asarray(inliers_p2).T)
# bestH = h
# if len(maxInliers) > (len(p1[0]) * tol):
# break
check_homography_calculate(best_inliers_p1, best_inliers_p2, beach5, beach4, "points after ransac")
return bestH
def geometricDistance(p1, p2, h):
p1 = np.array((p1[0], p1[1], 1)).reshape((3, 1))
estimatep2 = np.dot(h, p1)
estimatep2 = (1 / estimatep2.item(2)) * estimatep2
p2 = np.array((p2[0], p2[1], 1)).reshape((3, 1))
error = p2 - estimatep2
return np.linalg.norm(error)
def getPoints_SIFT(im1, im2):
p1 = []
p2 = []
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(im1, None)
kp2, des2 = sift.detectAndCompute(im2, None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# Apply ratio test
good = []
for m, n in matches:
if m.distance < 0.4 * n.distance:
good.append([m])
img1_idx = m.queryIdx
img2_idx = m.trainIdx
(x1, y1) = kp1[img1_idx].pt
(x2, y2) = kp2[img2_idx].pt
p1.append((x1, y1))
p2.append((x2, y2))
# cv2.drawMatchesKnn expects list of lists as matches.
img_match = np.zeros((im1.shape[0] + im2.shape[0], im1.shape[1] + im2.shape[1]))
img_match = cv2.drawMatchesKnn(im1, kp1, im2, kp2, good, img_match, flags=2)
# print(len(p1))
plt.imshow(img_match), plt.show()
p1 = np.asarray(p1).T
p2 = np.asarray(p2).T
# p1, p2 = get_coordinate_from_sift(matches, kp1, kp2)
return p1, p2
def build_sintra_panorama_sift(sintra1, sintra2, sintra3, sintra4, sintra5, ransac=False):
# sintra 1_2
p1, p2 = getPoints_SIFT(sintra1, sintra2)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra1.shape, sintra2.shape, H)
warp_sintra1 = warpH(sintra1, H, panorma_size)
sintra_1_2 = imageStitching(sintra2, warp_sintra1, offset)
# #sintra 4_5
p1, p2 = getPoints_SIFT(sintra4, sintra5)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra4.shape, sintra5.shape, H)
warp_sintra4 = warpH(sintra4, H, panorma_size)
sintra_4_5 = imageStitching(sintra5, warp_sintra4, offset)
# sintra 3_4_5
p1, p2 = getPoints_SIFT(sintra_4_5, sintra3)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra_4_5.shape, sintra3.shape, H)
warp_sintra4_5 = warpH(sintra_4_5, H, panorma_size)
sintra_3_4_5 = imageStitching(sintra3, warp_sintra4_5, offset)
# sintra 1_2_3_4_5
p1, p2 = getPoints_SIFT(sintra_1_2, sintra_3_4_5)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra_1_2.shape, sintra_3_4_5.shape, H)
warp_sintra1_2 = warpH(sintra_1_2, H, panorma_size)
sintra_1_2_3_4_5 = imageStitching(sintra_3_4_5, warp_sintra1_2, offset)
return sintra_1_2_3_4_5
def build_beach_panorama_sift(beach1, beach2, beach3, beach4, beach5, ransac=False):
# # beach 4_5
# p1, p2 = getPoints_SIFT(beach1, beach2)
# H = computeH(p1, p2)
# if ransac:
# H = ransacH(p1, p2, 1000, 0.9)
# offset, panorma_size, H = calculate_size(beach1.shape, beach2.shape, H)
# warp_beach1 = warpH(beach1, H, panorma_size)
# beach_1_2 = imageStitching(beach2, warp_beach1, offset)
# beach 4_5
p1, p2 = getPoints_SIFT(beach5, beach4)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.9)
offset, panorma_size, H = calculate_size(beach5.shape, beach4.shape, H)
warp_beach5 = warpH(beach5, H, panorma_size)
beach_4_5 = imageStitching(beach4, warp_beach5, offset)
# #beach 2_3
p1, p2 = getPoints_SIFT(beach3, beach2)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.9)
offset, panorma_size, H = calculate_size(beach3.shape, beach2.shape, H)
warp_beach3 = warpH(beach3, H, panorma_size)
beach_2_3 = imageStitching(beach2, warp_beach3, offset)
# sintra 2_3_4_5
p1, p2 = getPoints_SIFT(beach_2_3, beach_4_5)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.9)
offset, panorma_size, H = calculate_size(beach_2_3.shape, beach_4_5.shape, H)
warp_beach2_3 = warpH(beach_2_3, H, panorma_size)
beach_2_3_4_5 = imageStitching(beach_4_5, warp_beach2_3, offset)
return beach_2_3_4_5
def build_our_panorama (left,middle,right,ransac = False ):
p1, p2 = getPoints_SIFT( left,middle )
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 10000, 0.9)
offset, panorma_size, H = calculate_size(left.shape, middle.shape, H)
warp_left = warpH(left, H, panorma_size)
left_middle = imageStitching(middle, warp_left, offset)
p1, p2 = getPoints_SIFT(right, left_middle)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 10000, 0.99)
offset, panorma_size, H = calculate_size(right.shape, left_middle.shape, H)
warp_right = warpH(right, H, panorma_size)
panorama = imageStitching(left_middle, warp_right, offset)
return panorama
def build_our_panorama_blender(left,middle,right,ransac = False ):
p1, p2 = getPoints_SIFT( left,middle )
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 10000, 0.9)
offset, panorma_size, H = calculate_size(left.shape, middle.shape, H)
warp_left = warpH(left, H, panorma_size)
left_middle = imageStitching_for_blender(middle, warp_left, offset)
mask =np.zeros((left_middle.shape[0], left_middle.shape[1], 3), dtype=np.uint8)
mask[0:left_middle.shape[0],left_middle.shape[1]//2:left_middle.shape[1]] = 255
left_middle = blender(warp_left, left_middle, mask)
p1, p2 = getPoints_SIFT(right, left_middle)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 10000, 0.99)
offset, panorma_size, H = calculate_size(right.shape, left_middle.shape, H)
warp_right = warpH(right, H, panorma_size)
panorama = imageStitching_for_blender(left_middle, warp_right, offset)
mask =np.zeros((panorama.shape[0], panorama.shape[1], 3), dtype=np.uint8)
mask[0:panorama.shape[0],panorama.shape[1]//2:panorama.shape[1]] = 255
panorama = blender(panorama, warp_right, mask)
return panorama
def build_sintra_panorama_manual(sintra1, sintra2, sintra3, sintra4, sintra5, ransac=False):
# sintra 1_2
p1, p2 = getPoints(sintra1, sintra2, 6)
H = computeH(p1, p2)
print (H)
print("h1to2")
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra1.shape, sintra2.shape, H)
warp_sintra1 = warpH(sintra1, H, panorma_size)
sintra_1_2 = imageStitching(sintra2, warp_sintra1, offset)
# #sintra 4_5
p1, p2 = getPoints(sintra4, sintra5, 6)
H = computeH(p1, p2)
print("h4to5")
print(H)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra4.shape, sintra5.shape, H)
warp_sintra4 = warpH(sintra4, H, panorma_size)
sintra_4_5 = imageStitching(sintra5, warp_sintra4, offset)
# sintra 3_4_5
p1, p2 = getPoints(sintra_4_5, sintra3, 6)
H = computeH(p1, p2)
print("h45to3")
print(H)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra_4_5.shape, sintra3.shape, H)
warp_sintra4_5 = warpH(sintra_4_5, H, panorma_size)
sintra_3_4_5 = imageStitching(sintra3, warp_sintra4_5, offset)
# sintra 1_2_3_4_5
p1, p2 = getPoints(sintra_1_2, sintra_3_4_5, 6)
H = computeH(p1, p2)
print("h12to345")
print(H)
if ransac:
H = ransacH(p1, p2, 5000, 0.99)
offset, panorma_size, H = calculate_size(sintra_1_2.shape, sintra_3_4_5.shape, H)
warp_sintra1_2 = warpH(sintra_1_2, H, panorma_size)
sintra_1_2_3_4_5 = imageStitching(sintra_3_4_5, warp_sintra1_2, offset)
def build_beach_panorama_manual(beach1, beach2, beach3, beach4, beach5, ransac=False):
# # beach 4_5
# p1, p2 = getPoints_SIFT(beach1, beach2)
# H = computeH(p1, p2)
# if ransac:
# H = ransacH(p1, p2, 1000, 0.9)
# offset, panorma_size, H = calculate_size(beach1.shape, beach2.shape, H)
# warp_beach1 = warpH(beach1, H, panorma_size)
# beach_1_2 = imageStitching(beach2, warp_beach1, offset)
np.zeros_like()
# beach 4_5
p1, p2 = getPoints(beach5, beach4, 6)
H = computeH(p1, p2)
print(H)
if ransac:
H = ransacH(p1, p2, 5000, 0.9)
offset, panorma_size, H = calculate_size(beach5.shape, beach4.shape, H)
warp_beach5 = warpH(beach5, H, panorma_size)
beach_4_5 = imageStitching(beach4, warp_beach5, offset)
# #beach 2_3
p1, p2 = getPoints(beach3, beach2, 6)
print(H)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.9)
offset, panorma_size, H = calculate_size(beach3.shape, beach2.shape, H)
warp_beach3 = warpH(beach3, H, panorma_size)
beach_2_3 = imageStitching(beach2, warp_beach3, offset)
# sintra 2_3_4_5
p1, p2 = getPoints(beach_2_3, beach_4_5, 6)
print(H)
H = computeH(p1, p2)
if ransac:
H = ransacH(p1, p2, 5000, 0.9)
offset, panorma_size, H = calculate_size(beach_2_3.shape, beach_4_5.shape, H)
warp_beach2_3 = warpH(beach_2_3, H, panorma_size)
beach_2_3_4_5 = imageStitching(beach_4_5, warp_beach2_3, offset)
return beach_2_3_4_5
if __name__ == '__main__':
print('my_homography')
im1 = cv2.imread('data/incline_L.png')
im2 = cv2.imread('data/incline_R.png')
im1 = cv2.resize(im1, (int(im1.shape[1] / 2), int(im1.shape[0] / 2)))
im2 = cv2.resize(im2, (int(im2.shape[1] / 2), int(im2.shape[0] / 2)))
##Q 2.1
p1, p2 = getPoints(im1, im2, 6)
# check_homography(p1, p2, im1, im2, "points for homography")
# Q 2.2
H = computeH(p1, p2)
#check for calculating homography
p1 = np.asarray([[398, 167], [255,56],[203,92], [218,160],[357,147],[244,30]]).T
p2 = np.zeros((2,p1.shape[1]))
index = 0
for p in p1.T:
x, y, z = np.dot(H, np.array([[p[0]], [p[1]], [1]]))
p2[:,index] = np.asarray([[int(x / z), int(y / z)]])
index+=1
check_homography_calculate(p1, p2, im1, im2, "points for homography")
# 2.3+2.4
offset, panorma_size, H = calculate_size(im1.shape, im2.shape, H)
warp_im1 = warpH(im1, H, panorma_size)
panorama = imageStitching(im2, warp_im1, offset)
cv2.imwrite('panorama.jpg', panorama)
cv2.imshow('img', panorama)
#2.5
p1, p2 = getPoints_SIFT(im1,im2)
H = computeH(p1, p2)
offset, panorma_size, H = calculate_size(im1.shape, im2.shape, H)
warp_im1 = warpH(im1, H, panorma_size)
panorama = imageStitching(im2, warp_im1, offset)
cv2.imwrite('panorama.jpg', panorama)
# #2.7 + 2.8
# #sintra panorama
sintra1 = cv2.imread('data/sintra1.jpg')
sintra2 = cv2.imread('data/sintra2.jpg')
sintra3 = cv2.imread('data/sintra3.jpg')
sintra4 = cv2.imread('data/sintra4.jpg')
sintra5 = cv2.imread('data/sintra5.jpg')
sintra1 = cv2.resize(sintra1, (int(sintra1.shape[1] / 7), int(sintra1.shape[0] / 7)))
sintra2 = cv2.resize(sintra2, (int(sintra2.shape[1] / 7), int(sintra2.shape[0] / 7)))
sintra3 = cv2.resize(sintra3, (int(sintra3.shape[1] / 7), int(sintra3.shape[0] / 7)))
sintra4 = cv2.resize(sintra4, (int(sintra4.shape[1] / 7), int(sintra4.shape[0] / 7)))
sintra5 = cv2.resize(sintra5, (int(sintra5.shape[1] / 7), int(sintra5.shape[0] / 7)))
sintra_panorama = build_sintra_panorama_sift(sintra1, sintra2, sintra3, sintra4, sintra5, True)
sintra_panorama = build_sintra_panorama_manual(sintra1, sintra2, sintra3, sintra4, sintra5)
# cv2.imwrite('panorama_sintra_manual_without_ransac.jpg', sintra_panorama)
# # beach panorama
beach1 = cv2.imread('data/beach1.jpg')
beach2 = cv2.imread('data/beach2.jpg')
beach3 = cv2.imread('data/beach3.jpg')
beach4 = cv2.imread('data/beach4.jpg')
beach5 = cv2.imread('data/beach5.jpg')
beach1 = cv2.resize(beach1, (int(beach1.shape[1] / 6), int(beach1.shape[0] / 6)))
beach2 = cv2.resize(beach2, (int(beach2.shape[1] / 6), int(beach2.shape[0] / 6)))
beach3 = cv2.resize(beach3, (int(beach3.shape[1] / 6), int(beach3.shape[0] / 6)))
beach4 = cv2.resize(beach4, (int(beach4.shape[1] / 6), int(beach4.shape[0] / 6)))
beach5 = cv2.resize(beach5, (int(beach5.shape[1] / 6), int(beach5.shape[0] / 6)))
beach_panorama = build_beach_panorama_sift(beach1, beach2, beach3, beach4, beach5, True)
beach_panorama = build_beach_panorama_manual(beach1, beach2, beach3, beach4, beach5)
cv2.imwrite('beach_panorama.jpg', beach_panorama)
#2.9+2.10
left = cv2.imread('my_data/our_panorama_left.jpeg')
middle = cv2.imread('my_data/our_panorama_middle.jpeg')
right = cv2.imread('my_data/our_panorama_right.jpeg')
left = cv2.resize(left, (int(left.shape[1] / 4), int(left.shape[0] / 4)))
middle = cv2.resize(middle, (int(middle.shape[1] / 4), int(middle.shape[0] / 4)))
right = cv2.resize(right, (int(right.shape[1] / 4), int(right.shape[0] / 4)))
panorama = build_our_panorama_blender(left, middle, right, ransac=False)
cv2.imwrite('our_panorama_blend.png',panorama)
panorama = build_our_panorama(left, middle, right, ransac=False)
cv2.imwrite('our_panorama.png',panorama)
left = cv2.imread('my_data/panorama_technion/left.jpeg')
middle = cv2.imread('my_data/panorama_technion/middle.jpeg')
right = cv2.imread('my_data/panorama_technion/right.jpeg')
left = cv2.resize(left, (int(left.shape[1] / 4), int(left.shape[0] / 4)))
middle = cv2.resize(middle, (int(middle.shape[1] / 4), int(middle.shape[0] / 4)))
right = cv2.resize(right, (int(right.shape[1] / 4), int(right.shape[0] / 4)))
panorama = build_our_panorama_blender(right, middle, left, ransac=False)
cv2.imwrite('our_panorama_technion_blend.png',panorama)
panorama = build_our_panorama(left, middle, right, ransac=True)
cv2.imwrite('our_panorama_technion.png',panorama)
#%%
class StraightLines():
def __init__(self, m, c):
self.slope = m
self.y_intercept = c
def __call__(self, x):
return self.slope * x + self.y_intercept
line = StraightLines(0.4, 3)
for x in range(-5, 6):
print(x, line(x))
lines = []
lines.append(StraightLines(1, 0))
lines.append(StraightLines(0.5, 3))
lines.append(StraightLines(-1.4, 1.6))
import matplotlib.pyplot as plt
import numpy as np
# X = np.linspace(-5,5,100)
for index, line in enumerate(lines):
y=[]
for x in np.linspace(-5,5,100):
y.append(line(x))
plt.plot(X, y, label='line' + str(index))
plt.title('Some straight lines')
plt.xlabel('x', color='#1C2833')
plt.ylabel('y', color='#1C2833')
plt.legend(loc='upper left')
plt.grid()
plt.show()
#%%
# def my_Resize (*args) :
# l=[]
# for arg in args :
# arg = cv2.resize(arg, (int(arg.shape[1] / 6), int(arg.shape[0] / 6)))
# l.append(arg)
# return l
def my_Resize_arr (*args) :
arr = np.zeros((200,266,3))
for i in range(len(args)) :
arr[i] = cv2.resize(args[i], (int(args[i].shape[1] / 6), int(args[i].shape[0] / 6)))
return arr