Skip to content

Course materials of "Bayesian Modelling and Probabilistic Programming with Numpyro, and Deep Generative Surrogates for Epidemiology"

License

Notifications You must be signed in to change notification settings

elizavetasemenova/prob-epi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

https://elizavetasemenova.github.io/prob-epi

Giving feedback

  • To correct typos, please make pull requests on GitHub. If these notes ever get published, I will list your name in Acknowledgements.

  • For more substantial suggestions about the course content, such as desired topics, please use issues on GitHub or email them to elizaveta [dot] p [dot] [insert my surname] [at] gmail [dot] com.

  • If you enjoyed the content and / or learnt from it, please leave a 'star' to the book's GitHub repository.

  • If you are creating a written document (a paper, report, book chapter) where you use what you've learnt here, please cite

@software{Semenova_Bayesian_Modelling_and_2024,
author = {Semenova, Elizaveta},
doi = {10.5281/zenodo.11550659},
month = jun,
title = {{Bayesian Modelling and Probabilistic Programming with Numpyro, and Deep Generative Surrogates for Epidemiology.}},
url = {https://github.com/elizavetasemenova/prob-epi},
version = {v1.0.0},
year = {2024}
}

Conda environment

To run the code examples from the course, the recommended Conda environemnt can be created as follows:

conda create -n aims python=3.9
conda activate aims
conda install -c conda-forge jupyter-book
conda install conda-forge::matplotlib
conda install numpy
conda install conda-forge::ghp-import
conda install conda-forge::numpyro
conda install conda-forge::jax
pip install sphinxcontrib-tikz
conda install conda-forge::geopandas
conda install conda-forge::arviz
conda install anaconda::seaborn
pip install pyppeteer