-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgibbs_util.jl
163 lines (133 loc) · 5.81 KB
/
gibbs_util.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# utility functions for Gibbs sampling
mutable struct GibbsSamplerControls
"""
Structure to store the parameters of the Gibbs sampler
"""
n_iter::Int64 # total number of Gibbs iterations to run
n_burn::Int64 # burn-in
n_thin::Int64 # collect every `n_thin` samples
n_print::Int64 # print status updates with timings every `n_print` iterations
# set which components to update
gibbs_psi::Bool # NTL Ψ paramters
gibbs_alpha::Bool # NTL alpha parameter
gibbs_T::Bool # arrival times
gibbs_ia_params::Bool # arrival time distribution parameters
gibbs_sigma::Bool # order of blocks in partition/vertices in graph
# set arrival model
arrivals::String
ia_distribution::Function
# prior parameters
ia_prior_params::Vector{Float64}
n_ia_params::Int64
# model-specific functions used within the sampler
initialize_arrival_params::Function # for initializing arrival distn parameters
update_arrival_params::Function # for updating arrival distn parameters
ntl_alpha_log_prior::Function # for calculating the prior density of alpha
ntl_alpha_prior_dist::UnivariateDistribution # for initializing alpha
lpdf_ia_param_prior::Function # log pdf for interarrival parameter priors
# slice-sampling parameters
ss_w_alpha::Float64 # slice-sampling window parameter for alpha
alpha_fixed::Float64 # when alpha is fixed (i.e., not to be updated)
arrival_params_fixed::Vector{Float64} # when arrival distn parameters are fixed
end
struct GibbsSamplerOutput
"""
Structure to store posterior samples
"""
psi::Array{Float64,2}
T::Array{Int64,2}
alpha::Array{Float64,1}
ia_params::Array{Float64}
sigma::Array{Int64,2}
log_joint::Vector{Float64}
t_elapsed::Float64
end
function GibbsSampler(G::GibbsSamplerControls,PP::Vector{Int},T_data::Vector{Int})
"""
Main function for running the Gibbs sampler.
Inputs:
- `G`: a GibbsSamplerControls structure
- `PP`: a partition or degree vector
- `T_data`: a vector of arrival times (pass an empty vector if unknown)
"""
n_iter = G.n_iter
n_burn = G.n_burn
n_thin = G.n_thin
gibbs_psi = G.gibbs_psi
gibbs_T = G.gibbs_T
gibbs_alpha = G.gibbs_alpha
gibbs_ia_params = G.gibbs_ia_params
gibbs_sigma = G.gibbs_sigma
arrivals = G.arrivals
ia_dist = G.ia_distribution
ia_prior_params = G.ia_prior_params
n_ia_params = G.n_ia_params
w_alpha = G.ss_w_alpha
initialize_arrival_params = G.initialize_arrival_params
update_arrival_params! = G.update_arrival_params
ntl_alpha_log_prior = G.ntl_alpha_log_prior
ntl_alpha_prior_dist = G.ntl_alpha_prior_dist
lpdf_ia_param_prior = G.lpdf_ia_param_prior
alpha_fixed = G.alpha_fixed
arrival_params_fixed = G.arrival_params_fixed
K = size(PP,1)
N = sum(PP)
# println("Initializing sampler.")
gibbs_psi ? psi_gibbs = zeros(Float64,K,Int(ceil((n_iter-n_burn)/n_thin))) : psi_gibbs = []
gibbs_T ? T_gibbs = zeros(Int,K,Int(ceil((n_iter-n_burn)/n_thin))) : T_gibbs = []
gibbs_alpha ? alpha_gibbs = zeros(Float64,Int(ceil((n_iter-n_burn)/n_thin))) : alpha_gibbs = []
gibbs_ia_params ? ia_params_gibbs = zeros(Float64,n_ia_params,Int(ceil((n_iter-n_burn)/n_thin))) : ia_params_gibbs = []
gibbs_sigma ? perm_gibbs = zeros(Int,K,Int(ceil((n_iter-n_burn)/n_thin))) : perm_gibbs = []
log_joint_gibbs = zeros(Float64,Int(ceil((n_iter-n_burn)/n_thin)))
# initialize
gibbs_psi ? psi_current = 0.5*ones(Float64,K) : nothing
gibbs_alpha ? alpha_current = initialize_alpha(ntl_alpha_prior_dist) : alpha_current = [alpha_fixed]
if gibbs_ia_params
arrival_params_current = initialize_arrival_params(ia_prior_params)
else
arrival_params_current = arrival_params_fixed
end
if gibbs_T
T_current = initialize_arrival_times(PP,alpha_current[1],Geometric((K-1)/(N-1)))
elseif isempty(T_data)
error("Empty `T_data` is not compatible with not inferring arrival times.")
else
T_current = T_data
end
perm_current = collect(1:K) # initial permutation order
# Gibbs sampler
n_print = G.n_print
ct_gibbs = 0 # counts when to store state of Markov Chain
t_elapsed = 0.
# println("Finished initializing sampler.")
# println("Running Gibbs sampler.")
tic();
for s in 1:n_iter
gibbs_psi ? update_psi_parameters_partition!(psi_current,PP[perm_current],alpha_current[1]) : nothing ;
gibbs_T ? update_arrival_times!(T_current,PP[perm_current],alpha_current[1],ia_dist(arrival_params_current)) : nothing ;
gibbs_sigma ? update_block_order!(perm_current,PP[perm_current],T_current,alpha_current[1]) : nothing ;
gibbs_ia_params ? update_arrival_params!(arrival_params_current,PP[perm_current],T_current,N,ia_prior_params) : nothing ;
if arrivals=="crp-coupled"
alpha_current[1] = arrival_params_current[2]
else
gibbs_alpha ? update_ntl_alpha!(alpha_current,PP[perm_current],T_current,ntl_alpha_log_prior,w_alpha) : nothing ;
end
if (s > n_burn) && mod(s - n_burn,n_thin)==0
ct_gibbs += 1 ;
gibbs_psi ? psi_gibbs[:,ct_gibbs] = psi_current : nothing ;
gibbs_T ? T_gibbs[:,ct_gibbs] = T_current : nothing ;
gibbs_alpha ? alpha_gibbs[ct_gibbs] = alpha_current[1] : nothing ;
gibbs_ia_params ? ia_params_gibbs[:,ct_gibbs] = arrival_params_current : nothing ;
gibbs_sigma ? perm_gibbs[:,ct_gibbs] = perm_current : nothing ;
log_joint_gibbs[ct_gibbs] = logp_partition(PP[perm_current],T_current,alpha_current[1],ia_dist(arrival_params_current),true) +
ntl_alpha_log_prior(1 - alpha_current[1]) + lpdf_ia_param_prior(arrival_params_current)
end
if mod(s,n_print)==0
t_elapsed += toq();
println(" >> Finished with ",s," / ",n_iter," samples. Elapsed time is ",t_elapsed," seconds.")
tic();
end
end
println("Finished running Gibbs sampler.")
return GibbsSamplerOutput(psi_gibbs,T_gibbs,alpha_gibbs,ia_params_gibbs,perm_gibbs,log_joint_gibbs,t_elapsed)
end