-
Notifications
You must be signed in to change notification settings - Fork 0
/
quasisim_fitCONV2.cxx
993 lines (789 loc) · 34.5 KB
/
quasisim_fitCONV2.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
//-----------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------------------
//
// Fitting code for quasisim_tip.cxx variables
// Author: Emlyn Graham
// Instructions: Components to change located under ********* in the code.
// Options to change include:
// 1. Experiment: Global input files above the fitting function need to
// be changed
// 2. Variables: Variable starting values, step size, min and max value
// should be defined (min max optional, MINUIT is faster without
// these but may find non-physical values). Variables may also be fixed
// at a specific value if the user does not wish to fit them.
//
//-----------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------------------
#include "iostream.h"
#include "TFile.h"
#include "TH1.h"
#include "TH2.h"
#include "TSystem.h"
#include "TLine.h"
#include "TStyle.h"
#include "snprintf.h"
#include <string>
#include <typeinfo.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TGraph.h>
#include "TF1.h"
#include "TLine.h"
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <TFile.h>
#include <TH2.h>
#include <TMath.h>
#include <TRandom.h>
#include <TRandom2.h>
#include <TRandom3.h>
#include <TMinuit.h>
#include "Math/Minimizer.h"
#include "Math/Factory.h"
#include "Math/Functor.h"
#include "TError.h"
#include <iostream>
#include "TCollection.h"
#include"ldistro_TiU_212.h" // if using generated L distro from CC-full
//-----------------------------------------------------------------------------------------
// Needed to explicitly define sqrt in the MINUIT subroutine
//-----------------------------------------------------------------------------------------
using namespace std;
using std::sqrt;
inline int
sqrt( int in )
{
return static_cast<int>( std::sqrt( static_cast<double>( in ) ) );
}
//-----------------------------------------------------------------------------------------
// Function to set parameter details in Minuit fitting routine
//-----------------------------------------------------------------------------------------
void SetParameter(int number, const std::string& name, double startingval, double stepsize, double minval, double maxval, int ierflg)
{
gMinuit->mnparm(number, name, startingval, stepsize, minval, maxval, ierflg);
}
//-----------------------------------------------------------------------------------------
// Distribution functions
//-----------------------------------------------------------------------------------------
double gausgaus(double *x, double *par){
double xx=x[0];
double f = 0;
if(xx > 0 && xx < par[0]){
f = exp(-0.5*pow((xx-par[0])/par[1],2));
}
else{
f = exp(-0.5*pow((xx-par[0])/par[2],2));
}
return f;
}
double gausexp(double *x, double *par){
double xx=x[0];
double f = 0.;
if(xx > 0 && xx < par[0]){
f = exp(-0.5*pow((xx-par[0])/par[1],2));
}
else{
f = exp(1./par[2]*(par[0]-xx));
}
return f;
}
//-----------------------------------------------------------------------------------------
// Colour scheme for MAD representation
//-----------------------------------------------------------------------------------------
void colour_mad()
{
const Int_t NRGBs = 20;
const Int_t NCont = 20;
// Colour scheme to match "Hinde special" in dagui
Double_t stops[NRGBs] = { 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45
, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90
, 1.00};//simulation data
Double_t red[NRGBs] = { 0.05, 0.05, 0.15, 0.30, 0.75, 1.00, 1.00, 1.00, 1.00, 1.00
, 0.85, 0.55, 0.50, 0.50, 0.70, 1.00, 1.00, 1.00, 0.95
, 1.00};
Double_t green[NRGBs] = { 0.10, 0.35, 0.45, 0.85, 1.00, 1.00, 0.95, 0.70, 0.35, 0.00
, 0.00, 0.00, 0.10, 0.10, 0.10, 0.25, 0.40, 0.60, 0.90
, 1.00};
Double_t blue[NRGBs] = { 0.70, 1.00, 1.00, 0.50, 0.30, 0.40, 0.20, 0.00, 0.00, 0.00
, 0.10, 0.25, 0.60, 0.70, 0.90, 1.00, 1.00, 1.00, 0.95
, 1.00};
TColor::CreateGradientColorTable(NRGBs, stops, red, green, blue, NCont);
gStyle->SetNumberContours(NCont);
gStyle->SetLineWidth(2);
}
//-----------------------------------------------------------------------------------------
// Function to measure fit between simulated and experimental MADs
//-----------------------------------------------------------------------------------------
// Arguments:
// avg - the average for the set expexp or expgaus distribution
// INCLUDE FURTHER ARGUMENTS HERE
//-----------------------------------------------------------------------------------------
double madfitfcn(double avg, double sig, double shellfrac){
//cout << "Average is " << avg << endl;
//cout << "Sigma is " << sig << endl;
//cout << "Shell fraction is " << shellfrac << endl;
//------------------------------------------------------------------------------
// SET OF CHECKS FOR FITTING
//------------------------------------------------------------------------------
// double inputgaus[3] = {1.0, 2.0, 3.0};
// double inputmean[] = {5.};
// cout << "Output var sum: " << inputgaus[0]+inputgaus[1]+inputgaus[2] << endl;
// cout << "Output mean: " << inputmean[0] << endl;
// double gausout = gausexp(inputmean, inputgaus);
// cout << "Output gaus: "<< gausout << endl;
// CURRENT ISSUE THAT I'VE NOTICED IS THAT THE gausexp cannot be called, either return
// error or
// just 0 when it is used to populate a TH1F and then get random value
// cout << "GausExp " << gausexp(5., inputgaus) << "n\" << endl;
// cout << "Input mean is: " << *avg << endl;
//------------------------------------------------------------------------------
//gROOT->SetBatch(kTRUE);
gROOT->SetBatch(0);
gStyle->SetOptStat(0);
gStyle->SetPadTickX(1);
gStyle->SetPadTickY(1); // use 2,3,4 to get axis label as well
//------------------------------------------------------------------------------
// Input stuff (can be read from input files)
//------------------------------------------------------------------------------
int Z1 = 22; // Projectile
int A1 = 50;
int Z2 = 92; // Target
int A2 = 238;
double ELAB = 258.00; // MeV
double ECM = (double) A2/(A1+A2) * ELAB;
int NMAX =1800000; // Total number of fission events
int MEL = 0; // Multiplier for number of Elasics, ETOT = MEL * NMAX 100
int JMIN = 1; // Needs to be JMIN > 0
int JMAX = 79;
int THMIN = 15.0; // Need to have THMIN > 0 (Rutherford -> infinity at 0)
int THMAX = 165.0;
bool ccfullinput = true; // read L distro from CC-full output file
// elastics sigma
double M0 = 0.015; // sigma at 0 deg 0.008
double M180 = 0.015; // sigma at 180 deg 0.008
// MR sigma
double MRSIGMAMIN = 0.010; // sigma at MRSTART 0.025
double MRSIGMAMAX = 0.1; // sigma at MR = 0.5
double Scale_factor_CCFULL = 1.0;
// fission times
bool usegausexp = true; // Use gausexp or gausgaus
double xd1 = 1.0 ; //0.7 // Ratio of Landau/Gaus
double sh_frac = shellfrac;
//double sh_frac = 0.78; //0.4, 0.65 // Fraction of total events that are shell
// dependent
double time_offset = 0.00e-21; //0 sec; t = time_offset + F(t) where F(t) is Landau()
// or Gaus() dep on xd1 above
// Landau
//double mL = 5e-21; // sec; most prob value - Landau
//double sL = 20e-22; // sec; sigma - Landau
// Set mean
//double mean = 7.300e-21; // 6.8 sec; mean - gausgaus/gausexp
double mean = avg; // Mean controlled by fitting variable
//double sigma = 2.800e-21; //1.35 sec; sigma - gaus (gausgaus/gausexp)
double sigma = sig; // Sigma controlled by fitting variable
double lifetime = 2.800e-21; //1.9 sec; lifetime decay - exp/sigma (gausexp/gausgaus)
const double m_sh = 0.280; // Mr; mean value - mass component that is shell dependent
const double sig_sh = 0.05; // Mr; sigma - mass component that is shell dependent 0.05
// double m_sh = 0.0; // Mr; mean value - mass component that is shell dependent
// double sig_sh = 0.0; // Mr; sigma - mass component that is shell dependent
double mG = 0.5e-18; // sec; mean value - Gaus
double sG = 0.3e-18; // sec; sigma - Gaus
// double timeAxisMax = time_offset + 2*mL + 3*sL; // rough estimate of maximum time ...
double timeAxisMax = 1e-18; // rough estimate of maximum time ...
if(xd1!=1.0) timeAxisMax += 2*mG + 3*sG; // ... and add for Gaus ...
//------------------------------------------------------------------------------
// The system parameters
//------------------------------------------------------------------------------
int ATOT = A1+A2; // A for Compound Nucleus
int ZTOT = Z1+Z2; // Z for Compound Nucleus
double MR1IN = (double) A1/ATOT; // massratio particle 1
double MR2IN = (double) A2/ATOT; // massratio particle 2
double MRSTART = MR1IN; // start value of MR
// constants and converters
double const d2r = TMath::Pi()/180.0;
double const r2d = 180.0/TMath::Pi();
// for mass excange
double const tau = 5.2e-21; // sec - from Nucl Phys A440 (1985) 327-365 ...
// (p361) - 5.2e-21
// angle stuff
double const hbar = 6.58e-16; // planckyboy - eV*s
double const mn = 931.5e6; // nucleon mass - eV/c^2
double const c = 3e8; // light - m/s
double const massn = mn/pow(c,2); // nucleon mass - eV*s^2/m^2
double const r0 = 1.2e-15; // radii stuff - m
double const r1 = r0*pow(A1,1./3.); // radii nucleus 1
double const r2 = r0*pow(A2,1./3.); // radii nucleus 2
double const x1 = (r1+r2)/(1+(double)A1/A2); // displacement nucleus 1
double const x2 = (r1+r2)/(1+(double)A2/A1); // displacement nucleus 2
// Aditya: Begin edit for deformed moment of inertia calculations.
// lengths of axes for deformed nucleus
double const r_minor = 6.79142e-15; // calculated from beta2
double const r_major = 8.7269e-15;
// from TDHF: CM distance between nuclei at neck density of 0.08fm-3
double const r_axis = 2.4386e-14;
double const r_equator = 1.5542e-14;
double const r_z = 1.5542e-14;
// displacements for collisions with deformed nucleus using TDHF
double const x1_axis_TDHF = r_axis/(1+(double)A1/A2);
double const x2_axis_TDHF = r_axis/(1+(double)A2/A1);
double const x1_equator_TDHF = r_equator/(1+(double)A1/A2);
double const x2_equator_TDHF = r_equator/(1+(double)A2/A1);
double const x1_z_TDHF = r_z/(1+(double)A1/A2);
double const x2_z_TDHF = r_z/(1+(double)A2/A1);
//displacements for collisions with deformed nucleus using gemoetric model
double const x1_axis = (r1+r_major)/(1+(double)A1/A2);
double const x2_axis = (r1+r_major)/(1+(double)A2/A1);
double const x1_equator = (r1+r_minor)/(1+(double)A1/A2);
double const x2_equator = (r1+r_minor)/(1+(double)A2/A1);
double const x1_z = (r1+r_minor)/(1+(double)A1/A2);
double const x2_z = (r1+r_minor)/(1+(double)A2/A1);
double inertia = 0.0;
// momentum of inertia old (spherical) correct coding
double const inertia_spherical = massn * (A1*(pow(x1,2)+2./5.*pow(r1,2))
+ A2*(pow(x2,2)+2./5.*pow(r2,2)));
//old (spherical) coding that didn't give correct value
double const inertia_old = massn * (A1*(pow(x1,2)+2/5*pow(r1,2))
+ A2*(pow(x2,2)+2/5*pow(r2,2)));
double inertia_tdhf = 1.711196e-34;
// moments of inertia for collisions with deformed nucleus using TDHF cm distances
double const inertia_axis = massn * (A1*(pow(x1_axis_TDHF,2)+2./5.*pow(r1,2))
+ A2*(pow(x2_axis_TDHF,2)+1./5.*(pow(r_minor,2)
+ pow(r_major,2))));
double const inertia_equator = massn * (A1*(pow(x1_equator_TDHF,2)+2./5.*pow(r1,2))
+ A2*(pow(x2_equator_TDHF,2)+1./5.*(pow(r_minor,2)
+ pow(r_major,2))));
double const inertia_z = massn * (A1*(pow(x1_z_TDHF,2)+2./5.*pow(r1,2))
+ A2*(pow(x2_z_TDHF,2)+1./5.*(pow(r_minor,2)
+ pow(r_minor,2))));
// Moments of inertia for collisions with deformed nucleus using geometric cm distances
double const inertia_axis_g = massn * (A1*(pow(x1_axis,2)+2./5.*pow(r1,2))
+ A2*(pow(x2_axis,2)+1./5.*(pow(r_minor,2)
+ pow(r_major,2))));
double const inertia_equator_g = massn * (A1*(pow(x1_equator,2)+2./5.*pow(r1,2))
+ A2*(pow(x2_equator,2)+1./5.*(pow(r_minor,2)
+ pow(r_major,2))));
double const inertia_z_g = massn * (A1*(pow(x1_z,2)+2./5.*pow(r1,2))
+ A2*(pow(x2_z,2)+1./5.*(pow(r_minor,2)
+ pow(r_minor,2))));
// Choice of MoI
// inertia = inertia_axis_g;
inertia = inertia_tdhf*1.0;
// Aditya: End edit for deformed moment of inertia calculations.
double const red_mass = massn*A1*A2/(A1+A2);
double theta0 = 0;
//------------------------------------------------------------------------------
// Functions used
//------------------------------------------------------------------------------
// Mass exchange with time (for quasis)
TF1 *f1 = new TF1("f1","([0]-0.5)*exp(-x/[1])+0.5",0,1e-19);
f1->SetParameter(0,MRSTART);
f1->SetParameter(1,tau);
// Mass exchange for shell dependent component (for quasis)
TF1 *f4 = new TF1("f4","([0]- 0.280)*exp(-x/[1])+ 0.280",0,1e-19); // for 266Sg is 0.21804
f4->SetParameter(0,MRSTART);
f4->SetParameter(1,tau);
// Rutherford scattering (for elastics, no azimuthal dependence ie dOmega = 2*Pi*sin(x)*dx)
TF1 *f2 = new TF1("f2","sin(x/180*TMath::Pi())/(pow(sin(x/180*TMath::Pi()/2),4))",0,180);
// Time distro
if(usegausexp) {
TF1 *f3 = new TF1("f3",gausexp,0,100e-21,3);
f3->SetParameters(mean, sigma, lifetime);
f3->SetParNames("mean", "sigma", "lifetime");
}
else{
TF1 *f3 = new TF1("f3",gausgaus,0,100e-21,3);
f3->SetParameters(mean, sigma, lifetime);
f3->SetParNames("mean", "sigma", "lifetime");
}
//cout << "Random val is " << f3->GetRandom() << endl;
// Randomize input
TRandom3 *rand0 = new TRandom3(0);
TRandom3 *rand1 = new TRandom3(0);
TRandom3 *rand2 = new TRandom3(0);
TRandom3 *rand3 = new TRandom3(0);
TRandom3 *rand4 = new TRandom3(0);
// Double Range = RangeMean;
// Energy = r3->Gaus(EnergyMean,EnergySigma); // rand
double MR = 0;
double MRSIGMA = 0;
// double MRSIGMAMAX = 0.1;
double time = 0;
double theta = 0;
double massratio = 0;
double phiCoulomb0 = 0;
double phiCoulomb1 = 0;
double wt = 0;
double thetaTot = 0;
double D = 1.44*Z1*Z2/ECM;
double B1 = 0;
double D1 = 0;
double TKE = 0;
double B2 = 0;
double D2 = 0;
//---------------------------------------------------------------------------------
// Calculate how much each J need to be normalized with to reproduce total
// number of events
//---------------------------------------------------------------------------------
float cntTot = 0;
if(ccfullinput){
cntTot = SUMCOL2; // from generated headerfile
JMIN = (int) COL1[1];
JMAX = (int) COL1[NROW-1];
}
else{
for(int J=JMIN;J<=JMAX;J++){
cntTot += 2*J+1; // total sum
}
}
int cntNorm = (int) NMAX/cntTot; // normalization factor
// Defining histograms
// TH1F *quasi_mr = new TH1F("quasi_mr","MassRatio;MassRatio;Counts",100,0,1);
TH1F *quasi_time = new TH1F("quasi_time","Time;Time [s];Counts",1000,-1e-21,100e-21);
TH1F *quasi_jdist = new TH1F("quasi_jdist","J-distribution;J;Counts",JMAX-JMIN+1
,JMIN-0.5,JMAX+0.5);
TH2F *quasi_mrth1 = new TH2F("quasi_mrth1","MassRatio - Theta;MassRatio;#Theta [deg]"
,100,0,1,60,0,180);
TH2F *quasi_mrth2 = new TH2F("quasi_mrth2","MassRatio - Theta;MassRatio;#Theta [deg]"
,100,0,1,60,0,180);
TH2F *quasi_mrth3 = new TH2F("quasi_mrth3","MassRatio - Theta;MassRatio;#Theta [deg]"
,100,0,1,60,0,180);
TH2F *quasi_Lth = new TH2F("quasi_Lth","Angular Momentum - Theta;AngularMomentum;#Theta [deg]"
,150,0,150,60,0,180);
quasi_mrth1->SetOption("COLSCATZ");
quasi_mrth2->SetOption("COLSCATZ");
quasi_mrth3->SetOption("COLSCATZ");
quasi_Lth->SetOption("COLSCATZ");
// Elastic stuff
double w, MREL, MRELSIG;
for(int i=0;i<=180;i++){
if(i<THMIN || i>THMAX) continue;
w = f2->Eval(i)/f2->Integral(THMIN,THMAX);
MRELSIG = (M180-M0)/180.*i + M0;
cout << "Elastics, Theta = " << i << " out of " << THMAX << "\r" << flush;
for(int j=0;j<MEL*NMAX*w;j++){
MREL = rand0->Gaus(MR1IN,MRELSIG);
quasi_mrth1->Fill(MREL,i);
quasi_mrth1->Fill(1-MREL,180-i);
quasi_mrth2->Fill(MREL,i);
quasi_mrth2->Fill(1-MREL,180-i);
quasi_mrth3->Fill(MREL,i);
quasi_mrth3->Fill(1-MREL,180-i);
}
}
cout << endl;
int halfturns = 0;
for(int J=JMIN;J<=JMAX;J++){
// J = J*sqrt(Scale_factor_CCFULL);
// First approx with theta0 - simple method
// theta0 = asin(sqrt(J*(J+1)/(2*red_mass*Ecm*1e6))*hbar / (r1+r2));
// more 'serious' approach following D. Hindes recipe
// B1 = 6.32*J*ATOT/(A1*A2*1.385*sqrt(ECM/A1)); // fm using A1 to be
// projectile nucleus
B1 = 6.32*J*ATOT/(A1*A2*1.385*sqrt(ELAB/A1)); // fm using A1 to be
// projectile nucleus
D1 = D/2*(1+sqrt(1+pow((2*B1/D),2))); // fm
cout << "Fissions, J = " << J << " out of " << JMAX << "\r" << flush;
// int nevt = 1000;
int nevt = 0;
if(ccfullinput){
nevt = cntNorm*sqrt(Scale_factor_CCFULL)*COL2[J];
}
else{
nevt = cntNorm*(2*J+1);
}
for(int i=0;i<nevt;i++){
// Use flat time distro
// for(int i=0;i<5000;i++){
// time = i * 1e-23;
// Use a distro for time - 1000 events
// for(int i=0;i<nevt;i++){
// if(i>=0 && i<(xd1*nevt)) time = time_offset+rand1->
// Landau(mL,sL);
if(i>=0 && i<(xd1*nevt)) time =
(time_offset+f3->GetRandom())*(exp(-0.0095*J));
if(i>=(xd1*nevt) && i<nevt) time =
(time_offset+rand2->Gaus(mG,sG))*(exp(-0.0095*J));
// if(time<0) continue;
quasi_time->Fill(time);
quasi_jdist->Fill(J);
// adding third mass component that is dependent on shell closures
// this is to simulate events that may be trapped in a 'potential pocket'
// a fixed number of events whos masses are dependent on shells are added
// to MR which is then randomised and filled as massratio in the histograms
if(i>=0 && i<(xd1*nevt) && i<(sh_frac*nevt) ){
MR = f4->Eval(time); // for mass evolving to 208Pb
// MR = f1->Eval(time);
if(MR<m_sh){
// MR = f1->Eval(time);
MR = rand4->Gaus(m_sh,sig_sh);
}
// else{
// MR= rand4->Gaus(m_sh,sig_sh);
// for mass evolving independent of time
// after reaching m_sh with mass width sig_sh
// }
}
else{
MR = f1->Eval(time);
}
}
// Uncomment this next line to go back to old code with no
// shell stuff
// MR = f1->Eval(time);
// end old code massratio determination
// MRSIGMA = MRSIGMAMAX/(0.5-MR2IN)*MR - MRSIGMAMAX/(0.5-MR2IN)*MR2IN;
MRSIGMA = (MRSIGMAMAX-MRSIGMAMIN)/(0.5-MRSTART)*MR + MRSIGMAMIN
- (MRSIGMAMAX-MRSIGMAMIN)/(0.5-MRSTART)*MRSTART;
// more 'serious' approach with theta0 continued
TKE = 0.785*ZTOT*ZTOT*MR*(1-MR) / (pow(ATOT,(1./3.))*(pow(MR,(1./3.))
+ pow((1-MR),(1./3.))));
D2 = 1.834*pow(ATOT,(1./3.))*(pow(MR,(1./3.))
+ pow((1-MR),(1./3.)));
// B2 = 5*B1*A2/ATOT*sqrt(ECM*A1) / (7*sqrt(TKE*ATOT)*MR*(1-MR)
// *(pow(((1-MR)/MR),0.5) + pow((MR/(1-MR)),0.5)));
B2 = 5*B1*A2/ATOT*sqrt(ELAB*A1) / (7*sqrt(TKE*ATOT)*MR*(1-MR)*(pow(((1-MR)/MR),0.5)
+ pow((MR/(1-MR)),0.5)));
// Previous approach with halfturns
// theta0 = atan(D1/(2*B1)) + atan(D2/(2*B2));
// New approach using different theta depending on value of wt
phiCoulomb0 = 0.5*TMath::Pi() - atan(D1/(2*B1));
phiCoulomb1 = 0.5*TMath::Pi() - atan(D2/(2*B2));
wt = Scale_factor_CCFULL*sqrt(J*(J+1))*hbar/inertia*time;
thetaTot = phiCoulomb0 + wt + phiCoulomb1;
thetaTot = fmod(thetaTot,2*TMath::Pi()); // use fmod for modulus with float
if(thetaTot <= TMath::Pi()) theta = r2d * (TMath::Pi() - thetaTot);
if(thetaTot > TMath::Pi()) theta = r2d * (thetaTot - TMath::Pi());
// if(i%100==0) cout << MR << "\t" << MRSIGMA << "\t" << MR2IN << endl;
// theta = r2d * (theta0 + sqrt(J*(J+1))*hbar/inertia*time); // simple model
// theta = r2d * (theta0 - sqrt(J*(J+1))*hbar/inertia*time); // first attempt
// (strange when over 180 deg)
// halfturns = theta/180;
// theta = fmod(theta,180); // fmod for modulus with float
// if (theta<0) theta = - theta;
// if(halfturns%2) theta = 180 - theta;
// if(i==0 && cnt==0) cout << "\n" << MR1IN << "\t" << MR2IN << endl;
// if(i==0 ) cout << "MR\t\tTKE\tD\tB1\t\tD1\tB2\t\tD2\ttheta" << endl;
// if((i==0 || i==10 || i==20 || i==30 || i==40 || i==50) )
// cout << MR << "\t" << TKE << "\t" << D << "\t" << B1 <<
// "\t" << D1 << "\t" << B2 << "\t" << D2 << "\t" << theta << endl;
if(theta<THMIN || theta>THMAX) continue;
//---------------------------------------------------------------------------------
// HISTO FILLING STUFF FROM HERE
//---------------------------------------------------------------------------------
// Fill only for J=10
// if(J==10){
// quasi_mrth1->Fill(MR,theta);
// quasi_mrth1->Fill(1-MR,180-theta);
// }
quasi_mrth1->Fill(MR,theta);
quasi_mrth1->Fill(1-MR,180-theta);
// Randomise massratio for particular theta
// for(int j=0;j<10;j++){
massratio = rand3->Gaus(MR,MRSIGMA); // radn
// quasi_mr->Fill(massratio);
// fill only for J=10
if(J==10){
quasi_mrth2->Fill(massratio,theta);
quasi_mrth2->Fill(1-massratio,180-theta);
}
// fill sum of all
quasi_mrth3->Fill(massratio,theta);
quasi_mrth3->Fill(1-massratio,180-theta);
quasi_Lth->Fill(J,theta);
// quasi_Lth->Fill(J,180-theta);
// }
// }
}
cout << "\nDONE!\n";
TExec *ex1 = new TExec("ex1","colour_mad()");
quasi_mrth3->SetMaximum(200000);
quasi_mrth3->GetListOfFunctions()->Add(ex1);
gROOT->FindObject("plot1");
gROOT->FindObject("plot2");
gROOT->FindObject("plot4");
TH2D *plot5 = quasi_mrth3->Clone();
gStyle->SetOptStat(0);
gROOT->ProcessLine(".L madTools_david_V9_Y.C");
TString title = "^{50}Ti + ^{238}U E_{cm} = 212.14 MeV";
TString saveFilePath1 = "50Ti+238U/"; // figures saved in captures directory
TString fileName = "50Ti238U_e258_run119";
TString format = "png"; // e.g pdf, eps, jpg etc...
filename1 = saveFilePath1 + fileName +"_expAngDist.dat"; //only half
filename2 = saveFilePath1 + fileName +"_expMRDist.dat"; //only half
ofstream fileout1(filename1);
ofstream fileout2(filename2);
//---------------------------------------------------------------------------------
// Comparison regions
//---------------------------------------------------------------------------------
TCutG *cutg1 = new TCutG("rgate",5);
cutg1->SetPoint(0,0.26,0);
cutg1->SetPoint(1,0.50,0);
cutg1->SetPoint(2,0.50,180);
cutg1->SetPoint(3,0.26,180);
cutg1->SetPoint(4,0.26,0);
TCutG *cutg2 = new TCutG("mrgate",5); //gating on 0.1 < MR < 0.9 && 90 < thetaCM < 160
cutg2->SetPoint(0,0.1,90);
cutg2->SetPoint(1,0.9,90);
cutg2->SetPoint(2,0.9,170);
cutg2->SetPoint(3,0.1,170);
cutg2->SetPoint(4,0.1,90);
TH1D *px1 =plot1->ProjectionX("px1",0,-1,"[mrgate]"); // Experiment in counts
TH1D *py1 =plot1->ProjectionY("py1",0,-1,"[rgate]"); //
TH1D *px2 =plot2->ProjectionX("px2",0,-1,"[mrgate]"); // Experiment in mb/rad.
TH1D *py2 =plot2->ProjectionY("py2",0,-1,"[rgate]"); //
TH1D *px4 =plot4->ProjectionX("px4",0,-1,"[mrgate]"); // Experiment in mb/rad.
TH1D *py4 =plot4->ProjectionY("py4",0,-1,"[rgate]"); //
TH1D *px5 =plot5->ProjectionX("px5",0,-1,"[mrgate]"); // Simulation.
TH1D *py5 =plot5->ProjectionY("py5",0,-1,"[rgate]"); // Simulation.
px2->SetMinimum(0);//disdth
px2->SetMaximum(560);//
py2->SetMinimum(0);//
py2->SetMaximum(480);//
int c_bins = plot1->GetYaxis()->GetNbins();
int x_bins = plot2->GetYaxis()->GetNbins(); //normased
int mr_bins = plot2->GetXaxis()->GetNbins(); //normased
const int n=c_bins;
const int m=mr_bins;
double thCM,fis_yield, xsec,xsec_err;
double mr,fis_yield_m,xsec_m, xsec_err_m;
//-----------------------error calculation -----------------------------------
//This information is just for calculting error bars
double cal_mon_eff =0.889807;
double cal_cube_eff =0.842332;
double cal_monsum = 165512;
double fis_mon_eff = 0.854057;
double fis_cube_eff = 0.815727;
double fis_monsum = 374128;
//----------------------------------------------------------------------------
TGraphErrors *gr_ang = new TGraphErrors(); //# points,x,y,dx,dy
TGraphErrors *gr_mr = new TGraphErrors(); //# points,x,y,dx,dy
/////////////////////////////// //Angular distribution ///////////////////////////
for(int i=0; i<=n;i++){
if(py2-> GetBinContent(i)>0 && (plot1->GetYaxis()->GetBinCenter(i))>0 ){
thCM = plot1->GetYaxis()->GetBinCenter(i);
fis_yield = (py1->GetBinContent(i))/fis_cube_eff;
xsec = scalefactor*(py2->GetBinContent(i));//dsigdth //READ FROM GROUP FIGURE!!!!!!!!!!!!!!!
xsec_err= xsec*sqrt(1./fis_yield + 1./cal_monsum + 1./fis_monsum);
gr_ang->SetPoint(i,thCM,xsec);
gr_ang->SetPointError(i,0,xsec_err);
fileout1 << thCM << " \t" << xsec << " \t" << xsec_err <<endl;
}
}
/////////////////////////////// //Mass distribution ///////////////////////////////
for (int j=0;j<m;j++){
if (px1->GetBinContent(j)>0){
mr = plot1->GetXaxis()->GetBinCenter(j);
fis_yield_m = (px1->GetBinContent(j))/fis_cube_eff;// counts
xsec_m = scalefactor*(px2-> GetBinContent(j));//dsigdth
xsec_err_m= xsec_m*sqrt(1./fis_yield_m + 1./cal_monsum + 1./fis_monsum);
gr_mr->SetPoint(j,mr,xsec_m);
gr_mr->SetPointError(j,0,xsec_err_m);
}
fileout2 << mr << "\t\t " << "\t\t " << xsec_m << "\t\t " << xsec_err_m << endl;
}
//////////////////////////////////////////////////////////////////////////////////
// Scale simulation to match experimental counts
py5->Scale(sim_scalefactor);
px5->Scale(sim_scalefactor);
py1->Scale(scalefactor);
px1->Scale(scalefactor);
py2->Scale(scalefactor);
px2->Scale(scalefactor);
plot5->Scale(sim_scalefactor);
//---------------------------------------------------------------------------------
// Computing errors between histograms
//---------------------------------------------------------------------------------
// Define various measures of fit
// NEED TO FIGURE OUT WHY ONLY THE KStot MEASURE WORKS PROPERLY
Double_t MADerror = plot5->KolmogorovTest(plot1,"M UU");
Double_t ChiNDFError = plot5->Chi2Test(plot1, "UU CHI2/NDF");
//Double_t ChiError = plot5->Chi2Test(plot1, "UU CHI2");
Double_t Xchi2ndf = px5->Chi2Test(px1,"UU CHI2/NDF");
Double_t Ychi2ndf = py5->Chi2Test(py1,"UU CHI2/NDF");
//Double_t Xchi2 = px5->Chi2Test(px1,"UU CHI2");
//Double_t Ychi2 = py5->Chi2Test(py1,"UU CHI2");
Double_t XKS = px5->KolmogorovTest(px1,"M UU");
Double_t YKS = py5->KolmogorovTest(py1,"M UU");
//Double_t XAD = px5->AndersonDarlingTest(px1, "UU");
//Double_t YAD = py5->AndersonDarlingTest(py1, "UU");
// Delete histograms to prevent memory leaks when fitting
delete quasi_time;
delete quasi_jdist;
delete quasi_mrth1;
delete quasi_mrth2;
delete quasi_mrth3;
delete quasi_Lth;
delete plot5;
// Set measures of fit and return one
Double_t KStot = (XKS+YKS)*0.5;
//Double_t CHI2tot = (Xchi2+Ychi2)*0.5;
Double_t CHI2NDFtot = (Xchi2ndf+Ychi2ndf)*0.5;
//Double_t ADtot = (XAD+YAD)*0.5;
//cout << "KS MAD error is: " << MADerror << endl;
//cout << "Chi2 MAD error is: " << ChiError << endl;
//cout << "Chi2/NDF MAD error is: " << ChiNDFError << endl;
//cout << "KS MR error is: " << XKS << endl;
//cout << "KS proj error is: " << KStot << endl;
//cout << "Chi2 proj error is: " << CHI2tot << endl;
//cout << "Chi2NDF proj error is: " << CHI2NDFtot << endl;
//cout << "AD proj error is: " << ADtot << endl;
cout << ChiNDFError << endl;
cout << MADerror << endl;
cout << CHI2NDFtot << endl;
cout << KStot << endl;
Double_t objective = MADerror;
return objective;
}
//-----------------------------------------------------------------------------------------
// Define function for MINUIT to fit
//-----------------------------------------------------------------------------------------
// Arguments automatically dealt with by MINUIT, par values are inputs
// for each loop of the minimiser
//-----------------------------------------------------------------------------------------
void minuitFCN(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag){
double mean = par[0];
double sigma = par[1];
double sh_frac = par[2];
cout << "Mean is " << mean << endl;
cout << "Sigma is " << sigma << endl;
cout << "Shell fraction is " << sh_frac << endl;
f = madfitfcn(mean, sigma, sh_frac);
cout << "\n Objective value is " << f << "\n" << endl;
}
//******************************************************************************************
//-----------------------------------------------------------------------------------------
// Open experiment files globally
//-----------------------------------------------------------------------------------------
double scalefactor = 1.0;//1.0
double sim_scalefactor = 0.0007;// Simulation is compared with publication version
TFile* input1 = new TFile("YGSI3.run119.PEG.root"); // Input sorted root file
TH2D *plot1=(TH2D *)input1->Get("Xsec_pub/Exp_MAD");
// Experiment [counts] already binned MAD
TH2D *plot2=(TH2D *)input1->Get("Xsec_group/MrThCMxsec_T_mir_g");
// Experiment [dsigdth] for ang dist
TH2D *plot4=(TH2D *)input1->Get("Xsec_pub/MrThCMxsec_T_mir");
// Experiment [dsigdthdmr] for noramlised MAD
plot1->Scale(scalefactor);
void plotFCN(Double_t *x, Double_t *par){
double mean = x[0];
double sigma = 2.800e-21;
double sh_frac = 0.78;
cout << "Mean is " << mean << endl;
cout << "Sigma is " << sigma << endl;
cout << "Shell fraction is " << sh_frac << endl;
f = madfitfcn(mean, sigma, sh_frac);
cout << "\n Objective value is " << f << "\n" << endl;
return f;
}
//-----------------------------------------------------------------------------------------
// Minimisation routine
//-----------------------------------------------------------------------------------------
void minimiseMAD(){
//---------------------------------------------------------------------------------
// Initialise Minuit object, set objective function for fitting, and
// initialise arguments
//---------------------------------------------------------------------------------
// Minuit object
TMinuit *gMinuit = new TMinuit(1);
// Set function for minimisation
gMinuit -> SetFCN(minuitFCN);
// Initialise arguments
bool converged;
Int_t ierflg = 0;
Double_t arglist[10];
// Set print level (1 - verbose, 0 - normal, -1 - quiet (suppress warnings))
arglist[0] = 1;
gMinuit->mnexcm("SET PRINT", arglist, 1, ierflg);
// Define error as Chi2 error
// (in future change to 0.5 for log-likelihood measure)
arglist[0] = 1;
gMinuit->mnexcm("SET ERR", arglist, 1, ierflg);
//---------------------------------------------------------------------------------
// Parameter setting
//---------------------------------------------------------------------------------
// Set all parameters
// Inputs:
// - Index (int): Start at 0 increment for additional parameters
// - Name (str): Name given to parameter, use something relevant to variable
// - Starting value (double): Fitting routine starts at this, set near where
// the assumed fitted value is
// - Step value (double): Increment used by the routine, vary depending on
// time available and confidence in starting guess
// - Lower bound (double): Minimum value the routine checks. Set to 0.
// to remove bound, only change if fitting fails
// - Upper bound (double): Maximum value the routine checks. Set to 0.
// to remove bound, only change if fitting fails
SetParameter(0, "meanval", 7.3e-21, 1.000e-23, 1.000e-21, 2.000e-20, ierflg);
SetParameter(1, "sigma", 2.800e-21, 1.000e-23, 1.000e-21, 1.000e-20, ierflg);
SetParameter(2, "shellfraction", 0.78, 0.001, 0.5, 1.0, ierflg);
// Fix parameters which don't need to be fitted (at starting value)
// Input: Index (int) of parameter as set above
gMinuit->FixParameter(2);
gMinuit->FixParameter(1);
//---------------------------------------------------------------------------------
// Minimisation step
//---------------------------------------------------------------------------------
// Initial function run
gMinuit->mnexcm("CALL FCN", arglist ,1,ierflg);
// Max number of iterations
arglist[0]=50000;
arglist[1]=1.;
// Uses simple SIMPLEX approach to find good starting guess
//gMinuit->mnexcm("SIMPLEX", arglist ,1 ,ierflg);
//gMinuit->mnexcm("SCAN", arglist ,1 ,ierflg);
// Continues search with more robust MIGRAD
//gMinuit->mnexcm("MIGRAD", arglist ,2 ,ierflg);
gMinuit->mnimpr();
converged = true;
// Check MIGRAD convergence
//if (ierflg == 4) {
// converged = false;
//}
// If converged=false, finish fitting routine, print error
// (try rerunning with higher iteration number)
//if (!converged){
// cout << "MAD fit routine didn't converge" << endl;
// cout << "Check SIMPLEX results" << endl;
//}
// If converged=true, run MINOS for better estimate of minimum and errors (optional)
//else{
// Calculate Hesse matrix
//gMinuit->mnexcm("HESSE", arglist, 2, ierflg);
// Improve error accuracy
//gMinuit->mnexcm("MINOS", arglist ,0,ierflg);
//}
gROOT->SetBatch(0);
gMinuit->SetGraphicsMode(kTRUE);
//gMinuit->mnscan();
//gMinuit->mnplot();
//gMinuit->mncont(0,0,10);
//TGraph *graph = (TGraph*)gMinuit -> Contour(0,1);
//TGraph->Draw();
gMinuit->mncomd("scan 0 100",ierflg);
TGraph *gr = (TGraph*)gMinuit->GetPlot();
gr->SetTitle("");
//TF1 *gr = new TF1("plotFCN", plotFCN,1.0e-21,2.0e-20,0);
//gr->SetNpx(10);
//gr->SetTitle("Mean projected KS statistic as a function of mean sticking time;Mean sticking time;Mean KS");
gr->SetMarkerColor(1);
gr->SetMarkerStyle(20);
gr->SetMarkerSize(1);
gr->GetXaxis()->SetTitle("Mean sticking time");
gr->GetYaxis()->SetTitle("Mean projection KS statistic");
gr->GetXaxis()->CenterTitle();
gr->GetYaxis()->CenterTitle();
gr->GetXaxis()->SetTitleSize(0.04);
gr->GetYaxis()->SetTitleSize(0.04);
gr->GetXaxis()->SetLabelSize(0.02);
gr->GetYaxis()->SetLabelSize(0.02);
gr->Draw("AP");
gMinuit->mnexcm("EXIT", arglist, 1, ierflg);
//---------------------------------------------------------------------------------
// Print results
//---------------------------------------------------------------------------------
Double_t amin, edm, errdef;
Int_t nvpar, nparx, icstat;
gMinuit-> mnstat(amin,edm,errdef,nvpar,nparx,icstat);
gMinuit->mnprin(3,amin);
}