-
Notifications
You must be signed in to change notification settings - Fork 3
/
.Rhistory
265 lines (265 loc) · 11.3 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
library(reticulate)
import cv2
reticulate::repl_python()
import cv2
import PIL
from PIL import Image
import os.path
import glob
import numpy as np
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (m, m), 0)
ret, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n, n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# Plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
# Draw the contour
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
# Edge and Contour Detection
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (m, m), 0)
ret, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n, n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# Plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
# Draw the contour
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
# Edge and Contour Detection
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (m, m), 0)
ret, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n, n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# Plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
# Draw the contour
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Edge and Contour Detection
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (m, m), 0)
ret, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n, n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# Plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
# Draw the contour
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
# Edge and Contour Detection
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (m, m), 0)
ret, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n, n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
# Plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
# Draw the contour
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
for contour in contours:
#Edge and Contour Detection
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(m,m),0)
ret, thresh = cv2.threshold(gray,120,255,cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n,n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
#plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
# Draw the contour
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(m,m),0)
ret, thresh = cv2.threshold(gray,120,255,cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n,n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
#plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(m,m),0)
ret, thresh = cv2.threshold(gray,120,255,cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n,n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
#plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3)
# Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
# Draw the centroid
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1)
# Save the image with contours and centroids
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray,(m,m),0)
ret, thresh = cv2.threshold(gray,120,255,cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n,n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
#plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3) # Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1) # Draw the centroid
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile)) # Save the image with contours and centroids
cX = int(M["m10"] / M["m00"])
#Edge and Contour Detection
def edge(tiffile, outdir, n, m):
# Load image, grayscale, Otsu's threshold
ig = np.array(PIL.Image.open(tiffile))
gray = cv2.cvtColor(ig, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (m, m), 0)
ret, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_TOZERO_INV)
# Morph open using elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (n, n))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=3)
#plot the mask
contours, hierarchy = cv2.findContours(opening, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw all contours and centroids
image = ig.copy() # Create a copy of the original image
for contour in contours:
image = cv2.drawContours(image, [contour], -1, (0, 0, 255), 3) # Calculate the centroid of the contour
M = cv2.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
cv2.circle(image, (cX, cY), 5, (0, 255, 0), -1) # Draw the centroid
PIL.Image.fromarray(image, 'RGB').save(os.path.join(outdir, os.path.basename(tiffile))) # Save the image with contours and centroids
quit
library(reticulate) # Python binding for R.
setwd("D:/dd/2023-10-17/distribution_digitizer") # uncomment this line for setting the working directory manually.
getwd() # print the path to the working directory for copying into the Digitizer application (Field: "Working Directory").
library(shiny) # shiny library necessary for starting the app
# start the main app
runApp('app.R') # the app itself
# start the main app
runApp('app.R') # the app itself