Releases: eonu/sequentia
Releases · eonu/sequentia
v2.5.0
What's Changed
Documentation
- update copyright notice (#255)
Features
- add
mise.toml
and supportnumpy>=2
(#254) - add python v3.13 support (#253)
- add library benchmarks (#256)
- add
model_selection
sub-package for hyper-parameters (#257) - add model spec support to
HMMClassifier.__init__
(#258) - add
HMMClassifier.fit
multiprocessing (#259)
Full Changelog: v2.0.1...v2.5.0
v2.0.2
What's Changed
- release: v2.0.1 by @github-actions in #248
- fix: call
KNNMixin._dtw1d
whenindependent=True
by @eonu in #251
Full Changelog: v2.0.1...v2.0.2
v2.0.1
What's Changed
- release: v2.0.0 by @github-actions in #244
- fix: use log probs for
KNNClassifier.predict_log_proba
by @eonu in #247
Full Changelog: v2.0.0...v2.0.1
v2.0.0
v1.1.1
v1.1.0
Major changes
- Set
max_nbytes=None
to fix read-only buffer source array error injoblib.Parallel
(see scikit-learn/scikit-learn#7981). (#235) - Added
sequentia.preprocessing
module withsklearn.preprocessing
compatibility. (#234) - Added
sequentia.pipeline
module forsklearn.pipeline
compatibility. (#234)
Minor changes
v1.0.0
Major changes
- Fix
CategoricalHMM
andGaussianMixtureHMM
parameter defaults forparams
/init_params
being modified. (#231) - Fix
CategoricalHMM
andGaussianMixtureHMM
unfreeze()
callingsuper().freeze()
instead ofsuper().unfreeze()
. (#231) - Fix serialization/deserialization for
_KNNMixin
whenweighting=None
. (#231) - Add unit tests. (#231)
Minor changes
v1.0.0a2
v1.0.0a1
Major changes
- Rework interface to follow sklearn-like patterns. (#226)
- Remove
preprocessing
module (temporarily until design is finalized). (#226) - Add KNN regression. (#226)
- Add HMM classifier with categorical emissions. (#226)
- Use Pydantic for better validation. (#226)
- Add
datasets
module for sample datasets. (#226) - Split KNN logic across more functions. (#226)
- Better multi-processing for KNN. (#226)
- Documentation rework + switch Sphinx documentation theme. (#226)
- Fix Sakoe-Chiba width calculation. (#226)
v0.13.1
Major changes
- Add
datasets.load_random_sequences
for generating an arbitrarily sized dataset of sequences. (#216) - Remove
DeepGRU
andclassifier.rnn
module. (#215) - Add
sequentia.datasets
module. (#214) - Added
return_scores
argument toKNNClassifier.predict()
to return class scores. (#213) - Return
self
infit()
functions. (#213) - Update to
hmmlearn
v0.2.7. (#201) - Update
HMMClassifier
structure to matchKNNClassifier
. (#200) - Remove
'uniform'
KNNClassifier
weighting option. (#192) - Fix major
KNNClassifier
label scoring bug - thanks @manisci. (#187)
Minor changes
- Add
digits.npz
as package data insetup.py
. (#221) - Update
CONTRIBUTING.md
CI instructions. (#219) - Switch from TravisCI to CircleCI. (#218)
- Update HMM tests to use
datasets
module. (#217) - Add
tslearn
as a core dependency. (#216) - Remove
torchaudio
,torchvision
andtorchfsdd
dependencies. (#214) - Add playable audio to notebooks via
play_audio
helper. (#214) - Update
README.md
and documentation. (#202) - Add
Jinja2
dependency for RTD. (#188)