Releases: eonu/sequentia
Releases · eonu/sequentia
v0.12.0
Major changes
- Rework preprocessing module (see #177). (#179)
- Add
Custom
transformation. - Rename
Preprocess
toCompose
. - Don't validate observation sequences after each transformation in
Compose
. - Remove progress bars and
verbose
parameter. - Stop unnecessarily copying each observation sequence before transformations.
- Change
transform()
function onTransform
objects to accept a single observation sequence. - Remove
_apply()
function onTransform
objects. - Make
_is_fitted()
public onTransform
objects (change tois_fitted()
). - Use
__str__
instead of_describe()
for transformation descriptions.
- Add
- Remove need to send
DeepGRU
to device explicitly, so we can now doDeepGRU(..., device=device)
instead ofDeepGRU(..., device=device).to(device)
. (#178) - Add
dev
,test
,docs
andnotebooks
extras. (#174) - Remove
Equalize
transform as it goes against the point of variable-length sequence classification. (#172) - Change
TrimZeros
transform toTrimConstants
, allowing any constant-valued observation to be trimmed. (#172) - Add DeepGRU classifier implementation. (#169)
- Add
sequentia[torch]
extra for optionaltorch
CPU installation. (#169)
Minor changes
- Keep batch lengths on CPU (pytorch/pytorch#43227). (#178)
- Remove
docs/requirements.txt
and specifydocs
extra in.readthedocs.yml
. (#176) - Move Sphinx extensions from
docs/conf.py
torequirements.py
. (#176) - Bump development status classifier to beta. (#175)
- Move package dependency specifications to
requirements.py
. (#174) - Add
docs/README.md
,notebooks/README.md
andlib/test/README.md
. (#174) - Update HMM classifier diagram. (#173)
- Add build status to
README.md
. (#171) - Fix patch description in
CONTRIBUTING.md
. (#170) - Fix wording in
README.md
. (#167, #168)
v0.11.1
v0.11.0
Major changes
- Add trailing underscore to variables containing trainable parameters (see #154). (#158)
- Add properties for GMM emission distribution parameters (see #153). (#156)
- Add selective
GMMHMM
parameter freezing/unfreezing (see #150). (#155) - Fix random transition matrix initialization for
_LeftRightTopology
(see #149). (#151)
Minor changes
- Add access to Baum-Welch algorithm convergence monitor (see #139). (#162)
- Prefix
_Validator
functions withis_
(see #159). (#161) - Add validation for checking fitted parameters (see #157). (#160)
- Clean up
__repr__
forGMMHMM
,HMMClassifier
andKNNClassifier
. (#160) - Add classifier documentation links to
README.md
. (#152) - Simplify random transition matrix initialization for
_LinearTopology
and_LeftRightTopology
. (#151)
v0.10.3
v0.10.2
v0.10.1
v0.10.0
Major changes
- Switch out
pomegranate
HMM backend tohmmlearn
. (#105) - Remove separate HMM and GMM-HMM implementations – only keep a single GMM-HMM implementation (in the
GMMHMM
class) and treat multivariate Gaussian emission HMM as a special case of GMM-HMM. (#105) - Support string and numeric labels by using label encodings (from
sklearn.preprocessing.LabelEncoder
). (#105) - Add support for Python v3.6, v3.7, v3.8, v3.9 and remove support for v3.5. (#105)
- Switch from approximate DTW algorithm (
fastdtw
) to exact implementation (dtaidistance
) forKNNClassifier
. (#106)
Minor changes
- Switch to use duck-typing for iterables instead of requiring lists. (#105)
- Rename 'strict left-right' HMM topology to 'linear'. (#105)
- Switch
m2r
tom2r2
, asm2r
is no longer maintained. (#105) - Change
covariance
tocovariance_type
, to matchhmmlearn
. (#105) - Use
numpy.random.RandomState(seed=None)
as default instead ofnumpy.random.RandomState(seed=0)
. (#105) - Switch
KNNClassifier
serialization from HDF5 to pickling. (#106) - Use
intersphinx
for external documentation links, e.g. tonumpy
. (#108) - Change
MinMaxScale
bounds to floats. (#112) - Add
__repr__
function toGMMHMM
,HMMClassifier
andKNNClassifier
. (#120) - Use feature-independent warping (DTWI). (#121)
- Ensure minimum Sakoe-Chiba band width is 1. (#126)
- Add
.readthedocs.yml
configuration file. (#127)
v0.7.2
v0.7.1
v0.7.0
Major changes
- Fix
pomegranate
version to v0.12.0. (#79) - Add serialization and deserialization support for all classifiers. (#80)
HMM
,HMMClassifier
: Serialized in JSON format.KNNClassifier
: Serialized in HDF5 format.
- Finish preprocessing documentation and tests. (#81)
- (Internal) Remove nested helper functions in
KNNClassifier.predict()
. (#84) - Add strict left-right HMM topology. (#85)
Note: This is the more traditional left-right HMM topology. - Implement GMM-HMMs in the
GMMHMM
class. (#87) - Implement custom, uniform and frequency-based HMM priors. (#88)
- Implement distance-weighted DTW-kNN predictions. (#90)
- Rename
DTWKNN
toKNNClassifer
. (#91)