diff --git a/pca/pca.py b/pca/pca.py index 1ec1ffa..c3cccf7 100644 --- a/pca/pca.py +++ b/pca/pca.py @@ -753,7 +753,7 @@ def _eigsorted(cov, n_std): return vals[order], vecs[:, order] -def spe_dmodx(X, n_std=2, calpha=0.5, color='green', verbose=3): +def spe_dmodx(X, n_std=2, calpha=0.3, color='green', showfig=False, verbose=3): """Compute SPE/distance to model (DmodX). Description @@ -767,10 +767,12 @@ def spe_dmodx(X, n_std=2, calpha=0.5, color='green', verbose=3): Input data, in this case the Principal components. n_std : int, (default: 2) Standard deviation. The default is 2. - calpha : float, (default: 0.05) + calpha : float, (default: 0.3) transperancy color. color : String, (default: 'green') Color of the ellipse. + showfig : bool, (default: False) + Scatter the points with the ellipse and mark the outliers. Returns ------- @@ -809,15 +811,18 @@ def spe_dmodx(X, n_std=2, calpha=0.5, color='green', verbose=3): # Plot the raw points. g_ellipse = Ellipse(xy=g_ell_center, width=width, height=height, angle=angle, color=color, alpha=calpha) - # if ax is None: ax = plt.gca() - # g_ellipse = Ellipse(xy=g_ell_center, width=width, height=height, angle=angle, color=color, alpha=calpha) - # ax.add_artist(g_ellipse) - # ax.scatter(X[:, 0], X[:, 1], c=outliers, linewidths=0.3) y_score = list(map(lambda x: euclidean_distances([g_ell_center], x.reshape(1, -1))[0][0], X)) + + if showfig: + ax = plt.gca() + ax.add_artist(g_ellipse) + ax.scatter(X[~outliers, 0], X[~outliers, 1], c='black', linewidths=0.3, label='normal') + ax.scatter(X[outliers, 0], X[outliers, 1], c='red', linewidths=0.3, label='outlier') + ax.legend() else: outliers = np.repeat(False, X.shape[1]) y_score = np.repeat(None, X.shape[1]) - + out = pd.DataFrame() out['y_bool_spe'] = outliers out['y_score_spe'] = y_score