-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQGE.Tests.tex
executable file
·279 lines (268 loc) · 13.8 KB
/
QGE.Tests.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
\subsection{Rates of Convergence}
In this subsection we verify the theoretical error estimates developed in
\autoref{sec:QGEError}. To this end, we apply the Argyris FE in space while
applying implicit Euler in time to \eqref{eqn:QGE_psi}. To solve the resulting
nonlinear system at each time step we apply Newton's method where the Newton's
method is considered to have converged when the $L^2$-norm of the difference in
the current Newton iterate and the previous Newton iterate is less than
$10^{-7}$. Additionally, in each of the following computational tests we take
$Re = 1$, $Ro = 1$, unless otherwise stated. In the tables that following the
variable $k$ and $h$ will refer to the time and spatial discretization,
respectively. The tests which follow correspond to adding time dependence to the
original tests used in our papers \cite{Foster,Foster2L} and the numerical tests
for SQGE in both \autoref{sec:SQGETests} and \autoref{sec:SQGE2LTests}.
\subsubsection*{Test 1}
For this test we take the exact solution to be
\begin{equation}
\psi(t;x,y) = \left(\sin \pi x \sin \pi y\right)^2 \sin t
\label{eqn:Test1}
\end{equation}
which is very similar to \textbf{Test 6} in \cite{Foster}. Here we add the time
dependence in the sine term and let $\Omega = [0,1]^2$. The time interval for
integration is $t = [0,\frac{\pi}{2}]$. This test will have an intensifying
western boundary layer as time increases.
\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$k$ & $h$ & DoFs & $e_{L^2}$ & $L^2$ order \\% & $e_{H^1}$ & $H^1$ order & $e_{H^2}$ & $H^2$ order \\
\hline
$\nicefrac{1}{2}$ & $\nicefrac{1}{16}$ & $2853$ & $5.65\times 10^{-4}$ & $-$ \\[0.2em]%& $0.00293$ & $-$ & $0.01971$ & $-$ \\
$\nicefrac{1}{4}$ & $\nicefrac{1}{16}$ & $2853$ & $3.49\times 10^{-4}$ & $0.697$ \\[0.2em]%& $0.001807$ & $0.6971$ & $0.01216$ & $0.697$ \\
$\nicefrac{1}{8}$ & $\nicefrac{1}{16}$ & $2853$ & $1.916\times 10^{-4}$ & $0.864$ \\[0.2em]%& $0.0009931$ & $0.8636$ & $0.006683$ & $0.8634$ \\
$\nicefrac{1}{16}$ & $\nicefrac{1}{16}$ & $2853$ & $1.001\times 10^{-4}$ & $0.937$ \\[0.2em]%& $0.0005189$ & $0.9366$ & $0.003494$ & $0.9359$ \\
$\nicefrac{1}{32}$ & $\nicefrac{1}{16}$ & $2853$ & $5.11\times 10^{-5}$ & $0.970$ \\[0.2em]%& $0.000265$ & $0.9696$ & $0.001787$ & $0.9668$ \\
$\nicefrac{1}{64}$ & $\nicefrac{1}{16}$ & $2853$ & $2.58\times 10^{-5}$ & $0.985$ \\[0.2em]%& $0.0001339$ & $0.9851$ & $0.0009098$ & $0.9743$ \\
$\nicefrac{1}{128}$ & $\nicefrac{1}{16}$ & $2853$ & $1.30\times 10^{-5}$ & $0.993$ \\[0.2em]%& $6.728\times 10^{-5}$ & $0.9925$ & $0.0004705$ & $0.9513$ \\
$\nicefrac{1}{256}$ & $\nicefrac{1}{16}$ & $2853$ & $6.51\times 10^{-6}$ & $0.996$ \\[0.2em]%& $3.374\times 10^{-5}$ & $0.9959$ & $0.0002607$ & $0.8516$ \\
$\nicefrac{1}{512}$ & $\nicefrac{1}{16}$ & $2853$ & $3.26\times 10^{-6}$ & $0.998$ \\[0.2em]%& $1.691\times 10^{-5}$ & $0.9965$ & $0.0001715$ & $0.6046$ \\
$\nicefrac{1}{1024}$ & $\nicefrac{1}{16}$ & $2853$ & $1.63\times 10^{-6}$ & $0.999$ \\[0.2em]%& $8.497\times 10^{-6}$ & $0.9927$ & $0.0001405$ & $0.2878$ \\
\hline
\end{tabular}
\end{center}
\caption{Observed order of convergence for Implicit-Euler applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test1}.
%Note the observed order of convergence matches the theoretical error estimates developed in \autoref{sec:QGEError}.
}
\label{tab:Test1Time}
\end{table}
\begin{figure}
\begin{center}
\includegraphics[scale=0.6]{Figures/sin2sin2sinTimeConvergence.pdf}
\caption{Observed order of convergence for Implicit-Euler applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test1}.}
\label{fig:Test1Time}
\end{center}
\end{figure}
\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
$k$ & $h$ & DoFs & $e_{L^2}$ & $L^2$ order & $e_{H^1}$ & $H^1$ order & $e_{H^2}$ & $H^2$ order \\
\hline
$\nicefrac{1}{8192}$ & $\nicefrac{1}{2}$ & $38$ & $1.23\times 10^{-2}$ & $-$ & $1.18\times 10^{-1}$ & $-$ & $1.57\times 10^0$ & $-$ \\[0.2em]
$\nicefrac{1}{8192}$ & $\nicefrac{1}{4}$ & $174$ & $2.12\times 10^{-5}$ & $9.18$ & $7.31\times 10^{-4}$ & $7.34$ & $2.79\times 10^{-2}$ & $5.81$ \\[0.2em]
$\nicefrac{1}{8192}$ & $\nicefrac{1}{8}$ & $662$ & $7.88\times 10^{-7}$ & $4.75$ & $4.59\times 10^{-5}$ & $3.99$ & $3.04\times 10^{-3}$ & $3.20$ \\[0.2em]
$\nicefrac{1}{8192}$ & $\nicefrac{1}{16}$ & $2853$ & $7.87\times 10^{-9}$ & $6.65$ & $9.05\times 10^{-7}$ & $5.67$ & $1.29\times 10^{-4}$ & $4.56$ \\[0.2em]
$\nicefrac{1}{8192}$ & $\nicefrac{1}{32}$ & $11690$ & $6.97\times 10^{-11}$ & $6.82$ & $1.88\times 10^{-8}$ & $5.59$ & $5.98\times 10^{-6}$ & $4.43$ \\[0.2em]
$\nicefrac{1}{8192}$ & $\nicefrac{1}{64}$ & $47958$ & $7.23\times 10^{-12}$ & $3.27$ & $5.26\times 10^{-10}$ & $5.16$ & $3.43\times 10^{-7}$ & $4.12$ \\[0.2em]
\hline
\end{tabular}
\end{center}
\caption{Observed spatial orders of convergence for Argyris applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test1} using implicit
Euler for time discretization. Note the observed orders of convergence
nearly matches the theoretical error estimates developed in
\autoref{sec:QGEError}. The $L^2$ order, however, drops off for the last
spatial discretization due to nearing the machine epsilon.}
\label{tab:Test1Space}
\end{table}
\begin{figure}
\begin{center}
\includegraphics[scale=0.6]{Figures/sin2sin2sinSpaceConvergence.pdf}
\caption{Observed orders of convergence in space for Argyris applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test1} using
implicit Euler for the time discretization.}
\label{fig:Test1Space}
\end{center}
\end{figure}
\subsubsection*{Test 2}
For this test we take the exact solution to be
\begin{equation}
\psi(t;x,y) = \left[(1-\frac{x}{3})\left(1-e^{-20\,x}\right) \sin \pi
y\right]^2 \sin t
\label{eqn:Test2}
\end{equation}
which is very similar to \textbf{Test 6} in \cite{Foster}. Here we add the time
dependence in the exponential term and let $\Omega = [0,3] \times [0,1]$. The
time interval for integration is $t = [0,0.5]$. This test will have an
intensifying western boundary layer as time increases.
\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
$k$ & $h$ & DoFs & $e_{L^2}$ & $L^2$ order \\
\hline
$\nicefrac{1}{2}$ & $\nicefrac{1}{64}$ & $47958$ & $1.52\times 10^{-4}$ & $-$\\
$\nicefrac{1}{4}$ & $\nicefrac{1}{64}$ & $47958$ & $9.41\times 10^{-5}$ & $0.695$\\
$\nicefrac{1}{8}$ & $\nicefrac{1}{64}$ & $47958$ & $5.17\times 10^{-5}$ & $0.865$\\
$\nicefrac{1}{16}$ & $\nicefrac{1}{64}$ & $47958$ & $2.70\times 10^{-5}$ & $0.937$\\
$\nicefrac{1}{32}$ & $\nicefrac{1}{64}$ & $47958$ & $1.38\times 10^{-5}$ & $0.970$\\
$\nicefrac{1}{64}$ & $\nicefrac{1}{64}$ & $47958$ & $6.96\times 10^{-6}$ & $0.985$\\
$\nicefrac{1}{128}$ & $\nicefrac{1}{64}$ & $47958$ & $3.50\times 10^{-6}$ & $0.993$\\
$\nicefrac{1}{256}$ & $\nicefrac{1}{64}$ & $47958$ & $1.75\times 10^{-6}$ & $0.996$\\
$\nicefrac{1}{512}$ & $\nicefrac{1}{64}$ & $47958$ & $8.78\times 10^{-7}$ & $0.998$\\
$\nicefrac{1}{1024}$ & $\nicefrac{1}{64}$ & $47958$ & $4.40\times 10^{-7}$ & $0.996$\\
\hline
\end{tabular}
\end{center}
\caption{Observed order of convergence for Implicit-Euler applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test2}. Note the observed
order of convergence matches the theoretical error estimates developed in
\autoref{sec:QGEError}.}
\label{tab:Test2Time}
\end{table}
\begin{figure}
\begin{center}
\includegraphics[scale=0.6]{Figures/expsinTimeConvergence.pdf}
\caption{Observed orders of convergence in time for Implicit-Euler applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test2}.}
\label{fig:Test2Time}
\end{center}
\end{figure}
\begin{table}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
$k$ & $h$ & DoFs & $e_{L^2}$ & $L^2$ order & $e_{H^1}$ & $H^1$ order & $e_{H^2}$ & $H^2$ order \\
\hline
$\nicefrac{1}{8192}$ & $\nicefrac{1}{2}$ & $38$ & $2.86\times 10^{-2}$ & $-$ & $5.16\times 10^{-1}$ & $-$ & $1.82\times 10^{1}$ & $-$ \\
$\nicefrac{1}{8192}$ & $\nicefrac{1}{4}$ & $174$ & $4.79\times 10^{-3}$ & $2.58$ & $1.75\times 10^{-1}$ & $1.56$ & $9.28\times 10^0$ & $0.973$\\
$\nicefrac{1}{8192}$ & $\nicefrac{1}{8}$ & $662$ & $5.04\times 10^{-4}$ & $3.25$ & $3.38\times 10^{-2}$ & $2.37$ & $2.96\times 10^0$ & $1.65$\\
$\nicefrac{1}{8192}$ & $\nicefrac{1}{16}$ & $2853$ & $1.65\times 10^{-5}$ & $4.94$ & $2.17\times 10^{-3}$ & $3.96$ & $3.67\times 10^{-1}$ & $3.01$\\
$\nicefrac{1}{8192}$ & $\nicefrac{1}{32}$ & $11690$ & $4.17\times 10^{-7}$ & $5.30$ & $1.07\times 10^{-4}$ & $4.34$ & $3.47\times 10^{-2}$ & $3.40$\\
$\nicefrac{1}{8192}$ & $\nicefrac{1}{64}$ & $47958$ & $7.28\times 10^{-9}$ & $5.84$ & $3.70\times 10^{-6}$ & $4.86$ & $2.37\times 10^{-3}$ & $3.87$ \\
\hline
\end{tabular}
\end{center}
\caption{Observed order of convergence for Argyris applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test2}. Note the observed
order of convergence matches the theoretical error estimates developed in
\autoref{sec:QGEError}.}
\label{tab:Test2Space}
\end{table}
\begin{figure}
\begin{center}
\includegraphics[scale=0.6]{Figures/expsinSpaceConvergence.pdf}
\caption{Observed orders of convergence in space for Argyris applied to
\eqref{eqn:QGE_psi} with the exact solution \eqref{eqn:Test2} using
implicit Euler for the time discretization.}
\label{fig:Test2Space}
\end{center}
\end{figure}
%\subsection{North Atlantic}
%The North Atlantic Ocean is intensely studied and therefore makes a good test
%problem for evaluating the performance of our model \cite{Myers}. Hence, we have
%created a FE mesh of the North Atlantic which extend from $15^\circ N$ to $65^\circ
%N$ using GMSH \cite{GMSH}. The coastline data was obtain from GSHHS \cite{GSHHS}.
%The finite element spacing was specified to be {\color{red} $50km$}. Major
%islands such as Cuba, Hispaniola Greenland, Great Britain, Ireland, Prince
%Edward Island, and Newfoundland were connected to the nearest continent and hard
%boundaries were created at the northern and southern most extents of the North
%Atlantic. Additionally, the Atlantic was closed off from the Mediterranean at
%the Straits of Gibraltar, the Mediterranean was closed off from the Black
%Sea at the entrance to the Sea of Marmara, and finally the Mediterranean was
%closed off from the Red Sea at the Suez Canal. The resultant FE mesh can be seen in
%\autoref{fig:AtlanticMesh}.
%
%\begin{figure}
% \begin{center}
% \includegraphics[scale=0.5]{NAMesh.png}
% \caption{Mesh of the North Atlantic created using GMSH \cite{GMSH}.}
% \label{fig:AtlanticMesh}
% \end{center}
%\end{figure}
%
%The experiment used annual mean wind forcing obtained from Hellerman and
%Rosenstein (1983). We choose similar similar parameters as those used in
%\cite{delSastre04} and are summarized in \autoref{tab:AtlanticParameters}.
%
%\begin{table}
% \begin{center}
% \begin{tabular}{|l|l|}
% \hline
% $A$ & $2000m^2s^{-1}$\\
% \hline
% $\theta_0$ & $40^\circ$ \\
% \hline
% $\omega$ & $7.2526\times 10^{-5}s^{-1}$ \\
% \hline
% $H$ & $1000m$ \\
% \hline
% $L$ & $1000km$ \\
% \hline
% $r_e$ & $6378.1km$ \\
% \hline
% $\rho$ & $1027 \nicefrac{kg}{m^3}$ \\
% \hline
% \end{tabular}
% \end{center}
% \caption{Table of parameter values used for the simulations of the North
% Atlantic. \cite{delSastre04}}
% \label{tab:AtlanticParameters}
%\end{table}
%
%Using the relation
%\begin{equation}
% \beta = \frac{2\omega}{r_e}\cos \theta_0
% \label{eqn:Beta}
%\end{equation}
%and the parameters given in \autoref{tab:AtlanticParameters} we see that
%\begin{equation*}
% \beta \approx 1.742\times 10^{-11}\, m^{-1}\,s^{-1}.
%\end{equation*}
%Using this approximation for $\beta$ and \eqref{eqn:velocity_scale} with
%{\color{red}$\tau_0 = 0.6\, dyne\, cm^{-2}$ \cite{Hellerman} gives the following
%approximation for the characteristic velocity
%\begin{equation*}
%% \begin{split}
%% U &= \frac{3.1415 \cdot 0.6 dyne\, cm^{-2}}{1027 \nicefrac{kg}{m^3} \cdot
%% 1000\, m \cdot 1.742 \times 10^{-11}\,m^{-1}\,s^{-1} \cdot 1000\, km} \\
% U = 1.054\times 10^{-2} \nicefrac{m}{s}.
%% \end{split}
%\end{equation*}
%Therefore, the Rossby number is
%\begin{equation*}
%% Ro = \frac{1.054\times 10^{-2} \nicefrac{m}{s}}{1.742\times 10^{-11} m^{-1}
%% s^{-1} (1000 km)^2}
% Ro = 6.051\times 10^{-4}
%\end{equation*}
%and the Reynolds number is
%\begin{equation*}
% Re = 5.27.
%\end{equation*}}
%
%From the length scale $L$ and the velocity scale $U$ we see that the time scale
%is approximately $T = 3\, years$. Thus, a nondimensional time interval of
%$[0,120]$, which was also used by Bermejo et al \cite{delSastre04}, corresponds
%to a total of $360$ years. We use the same dimensional time step used in
%\cite{delSastre04}, which was $\Delta t = 2\, hours$. This time step corresponds
%to nondimensional time step of $k = 7.6053 \times 10^{-5}$. {\color{red} This
%may be unrealistic.}
%
%\subsection{Mediterranean}
%We have created a FE mesh of the the Mediterranean Sea using GMSH \cite{GMSH}. The coastline data was obtain from GSHHS \cite{GSHHS}.
%The finite element spacing was specified to be {\color{red} $15km$}. Major
%islands such as Corsica, Sardinia, and Sicily were connected to the nearest land
%mass. Additionally, the Atlantic was closed off from the Mediterranean at
%the Straits of Gibraltar, while the Gulf of Corinth was treated as land. The
%resultant FE mesh can be seen in \autoref{fig:AtlanticMesh}.
%
%\begin{figure}
% \begin{center}
% \includegraphics[scale=0.5]{MediterraneanMesh.png}
% \caption{Mesh of the Mediterranean created using GMSH \cite{GMSH}.}
% \label{fig:MedMesh}
% \end{center}
%\end{figure}
%