Serpyco is a serialization library for Python 3.9+ dataclasses that works just by defining your dataclasses:
import dataclasses
import serpyco_rs
@dataclasses.dataclass
class Example:
name: str
num: int
tags: list[str]
serializer = serpyco_rs.Serializer(Example)
result = serializer.dump(Example(name="foo", num=2, tags=["hello", "world"]))
print(result)
>> {'name': 'foo', 'num': 2, 'tags': ['hello', 'world']}
Inspired by serpyco.
serpyco-rs works by analysing the dataclass fields and can recognize many types : list
, tuple
, Optional
...
You can also embed other dataclasses in a definition.
The main use-case for serpyco-rs is to serialize objects for an API, but it can be helpful whenever you need to transform objects to/from builtin Python types.
Use pip to install:
$ pip install serpyco-rs
- Serialization and deserialization of dataclasses
- Validation of input data
- Very fast
- Support recursive schemas
- Generate JSON Schema Specification (Draft 2020-12)
- Support custom encoders/decoders for fields
- Support deserialization from query string parameters (MultiDict like structures) with from string coercion
There is support for generic types from the standard typing module:
- Decimal
- UUID
- Time
- Date
- DateTime
- Enum
- List
- Dict
- Bytes (pass through)
- TypedDict
- Mapping
- Sequence
- Tuple (fixed size)
- Literal[str, int, Enum.variant, ...]
- Unions / Tagged unions
- typing.NewType
Linux
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.16 | 6318.1 | 1 |
mashumaro | 0.45 | 2244.4 | 2.81 |
pydantic | 0.57 | 1753.9 | 3.56 |
serpyco | 0.82 | 1228.3 | 5.17 |
marshmallow | 8.49 | 117.4 | 53.35 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.07 | 13798 | 1 |
serpyco | 0.07 | 13622 | 1.02 |
mashumaro | 0.1 | 10219.5 | 1.36 |
pydantic | 0.22 | 4615.5 | 2.99 |
marshmallow | 2 | 497 | 27.69 |
MacOS
macOS Monterey / Apple M1 Pro / 16GB RAM / Python 3.11.0Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.1 | 9865.1 | 1 |
mashumaro | 0.2 | 4968 | 2 |
pydantic | 0.34 | 2866.7 | 3.42 |
serpyco | 0.69 | 1444.1 | 6.87 |
marshmallow | 4.14 | 241.8 | 41.05 |
Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
---|---|---|---|
serpyco_rs | 0.04 | 22602.6 | 1 |
serpyco | 0.05 | 21232.9 | 1.06 |
mashumaro | 0.06 | 15903.4 | 1.42 |
pydantic | 0.16 | 6262.6 | 3.61 |
marshmallow | 1.04 | 962 | 23.5 |
serpyco-rs
supports changing load/dump behavior with typing.Annotated
.
Currently available:
- Alias
- FieldFormat (CamelCase / NoFormat)
- NoneFormat (OmitNone / KeepNone)
- Discriminator
- Min / Max
- MinLength / MaxLength
- CustomEncoder
- NoneAsDefaultForOptional (ForceDefaultForOptional)
Alias
is needed to override the field name in the structure used for load
/ dump
.
from dataclasses import dataclass
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import Alias
@dataclass
class A:
foo: Annotated[int, Alias('bar')]
ser = Serializer(A)
print(ser.load({'bar': 1}))
>> A(foo=1)
print(ser.dump(A(foo=1)))
>> {'bar': 1}
Used to have response bodies in camelCase while keeping your python code in snake_case.
from dataclasses import dataclass
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import CamelCase, NoFormat
@dataclass
class B:
buz_filed: str
@dataclass
class A:
foo_filed: int
bar_filed: Annotated[B, NoFormat]
ser = Serializer(Annotated[A, CamelCase]) # or ser = Serializer(A, camelcase_fields=True)
print(ser.dump(A(foo_filed=1, bar_filed=B(buz_filed='123'))))
>> {'fooFiled': 1, 'barFiled': {'buz_filed': '123'}}
print(ser.load({'fooFiled': 1, 'barFiled': {'buz_filed': '123'}}))
>> A(foo_filed=1, bar_filed=B(buz_filed='123'))
Via OmitNone
we can drop None values for non required fields in the serialized dicts
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class A:
required_val: bool | None
optional_val: bool | None = None
ser = Serializer(A, omit_none=True) # or Serializer(Annotated[A, OmitNone])
print(ser.dump(A(required_val=None, optional_val=None)))
>>> {'required_val': None}
serpyco-rs
supports unions of types.
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class Foo:
val: int
ser = Serializer(Foo | int)
print(ser.load({'val': 1}))
>> Foo(val=1)
print(ser.load(1))
>> 1
But performance of unions is worse than for single dataclasses. Because we need to check all possible types in the union. For better performance, you can use Tagged unions.
Supports tagged joins with discriminator field.
All classes in the union must be dataclasses or attrs with discriminator field Literal[str]
or Literal[Enum.variant]
.
The discriminator field is always mandatory.
from typing import Annotated, Literal
from dataclasses import dataclass
from serpyco_rs import Serializer
from serpyco_rs.metadata import Discriminator
@dataclass
class Foo:
type: Literal['foo']
value: int
@dataclass(kw_only=True)
class Bar:
type: Literal['bar'] = 'bar'
value: str
ser = Serializer(list[Annotated[Foo | Bar, Discriminator('type')]])
print(ser.load([{'type': 'foo', 'value': 1}, {'type': 'bar', 'value': 'buz'}]))
>>> [Foo(type='foo', value=1), Bar(type='bar', value='buz')]
Supported for int
/ float
/ Decimal
types and only for validation on load.
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import Min, Max
ser = Serializer(Annotated[int, Min(1), Max(10)])
ser.load(123)
>> SchemaValidationError: [ErrorItem(message='123 is greater than the maximum of 10', instance_path='')]
MinLength
/ MaxLength
can be used to restrict the length of loaded strings.
from typing import Annotated
from serpyco_rs import Serializer
from serpyco_rs.metadata import MinLength
ser = Serializer(Annotated[str, MinLength(5)])
ser.load("1234")
>> SchemaValidationError: [ErrorItem(message='"1234" is shorter than 5 characters', instance_path='')]
ForceDefaultForOptional
/ KeepDefaultForOptional
can be used to set None as default value for optional (nullable) fields.
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class Foo:
val: int # not nullable + required
val1: int | None # nullable + required
val2: int | None = None # nullable + not required
ser_force_default = Serializer(Foo, force_default_for_optional=True) # or Serializer(Annotated[Foo, ForceDefaultForOptional])
ser = Serializer(Foo)
# all fields except val are optional and nullable
assert ser_force_default.load({'val': 1}) == Foo(val=1, val1=None, val2=None)
# val1 field is required and nullable and val1 should be present in the dict
ser.load({'val': 1})
>> SchemaValidationError: [ErrorItem(message='"val1" is a required property', instance_path='')]
You can provide CustomEncoder with serialize
and deserialize
functions, or serialize_with
and deserialize_with
annotations.
from typing import Annotated
from dataclasses import dataclass
from serpyco_rs import Serializer
from serpyco_rs.metadata import CustomEncoder
@dataclass
class Foo:
val: Annotated[str, CustomEncoder[str, str](serialize=str.upper, deserialize=str.lower)]
ser = Serializer(Foo)
val = ser.dump(Foo(val='bar'))
>> {'val': 'BAR'}
assert ser.load(val) == Foo(val='bar')
Note: CustomEncoder
has no effect to validation and JSON Schema generation.
serpyco-rs
can loads bytes fields as is (without base64 encoding and validation).
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class Foo:
val: bytes
ser = Serializer(Foo)
ser.load({'val': b'123'}) == Foo(val=b'123')
serpyco-rs
can generate JSON Schema for your dataclasses (Draft 2020-12).
from dataclasses import dataclass
from serpyco_rs import Serializer
@dataclass
class A:
"""Description of A"""
foo: int
bar: str
ser = Serializer(A)
print(ser.get_json_schema())
>> {
'$schema': 'https://json-schema.org/draft/2020-12/schema',
'$ref': '#/components/schemas/A',
'components': {
'schemas': {
'A': {
'properties': {
'foo': {'type': 'integer'},
'bar': {'type': 'string'}
},
'required': ['foo', 'bar'],
'type': 'object',
'description': 'Description of A'
}
}
}
}
Also, you can configure the schema generation via JsonSchemaBuilder
.
from dataclasses import dataclass
from serpyco_rs import Serializer, JsonSchemaBuilder
@dataclass
class A:
foo: int
bar: str
ser = Serializer(A)
builder = JsonSchemaBuilder(
add_dialect_uri=False,
ref_prefix='#/definitions',
)
print(builder.build(ser))
>> {'$ref': '#/definitions/__main__.A'}
print(builder.get_definitions())
>> {
"__main__.A": {
"properties": {
"foo": {
"type": "integer"
},
"bar": {
"type": "string"
}
},
"required": [
"foo",
"bar"
],
"type": "object"
}
}
serpyco-rs
can deserialize query string parameters (MultiDict like structures) with from string coercion.
from dataclasses import dataclass
from urllib.parse import parse_qsl
from serpyco_rs import Serializer
from multidict import MultiDict
@dataclass
class A:
foo: int
bar: str
ser = Serializer(A)
print(ser.load_query_params(MultiDict(parse_qsl('foo=1&bar=2'))))
>> A(foo=1, bar='2')
In serpyco-rs
, you can add support for your own types by using the custom_type_resolver
parameter and the CustomType
class. This allows you to define how your custom types should be serialized and deserialized.
The CustomType
class is a way to define how a custom type should be serialized and deserialized. It is a generic class that takes two type parameters: the type of the object to be serialized/deserialized and the type of the serialized/deserialized object.
Here is an example of a CustomType
for IPv4Address
:
from serpyco_rs import CustomType
from ipaddress import IPv4Address, AddressValueError
class IPv4AddressType(CustomType[IPv4Address, str]):
def serialize(self, obj: IPv4Address) -> str:
return str(obj)
def deserialize(self, data: str) -> IPv4Address:
try:
return IPv4Address(data)
except AddressValueError:
raise ValueError(f"Invalid IPv4 address: {data}")
def get_json_schema(self) -> dict:
return {"type": "string", "format": "ipv4"}
In this example, IPv4AddressType
is a CustomType
that serializes IPv4Address
objects to strings and deserializes strings to IPv4Address
objects. The get_json_schema
method returns the JSON schema for the custom type.
The custom_type_resolver
is a function that takes a type as input and returns an instance of CustomType
if the type is supported, or None
otherwise. This function is passed to the Serializer
constructor.
Here is an example of a custom_type_resolver
that supports IPv4Address
:
def custom_type_resolver(t: type) -> CustomType | None
if t is IPv4Address:
return IPv4AddressType()
return None
ser = Serializer(MyDataclass, custom_type_resolver=custom_type_resolver)
In this example, the custom_type_resolver
function checks if the type is IPv4Address
and returns an instance of IPv4AddressType
if it is. Otherwise, it returns None
. This function is then passed to the Serializer
constructor, which uses it to handle IPv4Address
fields in the dataclass.
from dataclasses import dataclass
from ipaddress import IPv4Address
from serpyco_rs import Serializer, CustomType
# Define custom type for IPv4Address
class IPv4AddressType(CustomType[IPv4Address, str]):
def serialize(self, value: IPv4Address) -> str:
return str(value)
def deserialize(self, value: str) -> IPv4Address:
return IPv4Address(value)
def get_json_schema(self):
return {
'type': 'string',
'format': 'ipv4',
}
# Defining custom_type_resolver
def custom_type_resolver(t: type) -> CustomType | None:
if t is IPv4Address:
return IPv4AddressType()
return None
@dataclass
class Data:
ip: IPv4Address
# Use custom_type_resolver in Serializer
serializer = Serializer(Data, custom_type_resolver=custom_type_resolver)
# Example usage
data = Data(ip=IPv4Address('1.1.1.1'))
serialized_data = serializer.dump(data) # {'ip': '1.1.1.1'}
deserialized_data = serializer.load(serialized_data) # Data(ip=IPv4Address('1.1.1.1'))