-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_model_complex.py
335 lines (267 loc) · 16.2 KB
/
test_model_complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import tensorflow as tf
import os
from keras.utils import multi_gpu_model
from keras.models import Model, Input
from keras.layers import Conv2D, Conv2DTranspose, UpSampling2D, AveragePooling2D
from keras.layers import Flatten, Add
from keras.layers import Concatenate, Activation, Layer
from keras.layers import LeakyReLU, BatchNormalization, Lambda, PReLU, Multiply
import matplotlib.pyplot as plt
import numpy as np
from metrics import metrics, psnrc
from keras.initializers import constant, RandomUniform
import pickle
from matplotlib import patches
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
import time
from conv import ComplexConv2D
from bn import ComplexBatchNormalization
from utils import GetReal, GetImag, GetAbs
from keras import backend as K
from tensorflow.python.ops import array_ops
data_path='/home/Co-VeGAN/testing_gt.pickle'
usam_path='/home/Co-VeGAN/testing_usamp_1dg_a5.pickle'
df=open(data_path,'rb')
uf=open(usam_path,'rb')
dataset_real=pickle.load(df)
u_sampled_data=pickle.load(uf)
data = np.asarray(dataset_real[0:2000,:,:])
usp_data = np.expand_dims(u_sampled_data[0:2000,:,:], axis = -1)
inp_shape = (320,320,2)
trainable = False
accel = 5
usp_img = usp_data.imag
usp_real = usp_data.real
usp_abs = np.abs(usp_data)
data_real = data.real
data_imag = data.imag
data_abs = np.abs(data)
data_2c = np.concatenate((np.expand_dims(data_real,axis=-1), np.expand_dims(data_imag,axis=-1)), axis = -1)
#to standardize the testing data, use values from the training data
max_val= 1.0495002344783833 #for a3 fastmri
#max_val=1.0492490897021722 #for a5 fastmri
#max_val=0.9437867229524688 #for a10 fastmri
#max_val=1.0171009378667877 #for a3 radial fastmri
#max_val = 1.0306227389576812 #for a3 spiral fastmri
usp_real = usp_real/max_val
usp_img = usp_img/max_val
usp_abs = usp_abs/max_val
data_gen = np.concatenate((usp_real, usp_img), axis =-1)
class sinusoid(Layer):
def __init__(self, **kwargs):
super(sinusoid, self).__init__(**kwargs)
def build(self, input_shape):
self.s1 = self.add_weight(name='s1',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.25, maxval=0.25),trainable=True)
self.w1 = self.add_weight(name='w1',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.05, maxval=0.05),trainable=True)
self.s2 = self.add_weight(name='s2',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.25, maxval=0.25),trainable=True)
self.w2 = self.add_weight(name='w2',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.05, maxval=0.05),trainable=True)
self.s3 = self.add_weight(name='s3',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.25, maxval=0.25),trainable=True)
self.w3 = self.add_weight(name='w3',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.05, maxval=0.05),trainable=True)
self.phi = self.add_weight(name='phi',shape=[1, 1, int(input_shape[3]/2)],initializer = RandomUniform(minval=-0.1, maxval=0.1),trainable=True)
self.s1 = tf.keras.backend.repeat_elements(self.s1, rep=input_shape[1], axis=0)
self.s1 = tf.keras.backend.repeat_elements(self.s1, rep=input_shape[2], axis=1)
self.w1 = tf.keras.backend.repeat_elements(self.w1, rep=input_shape[1], axis=0)
self.w1 = tf.keras.backend.repeat_elements(self.w1, rep=input_shape[2], axis=1)
self.s2 = tf.keras.backend.repeat_elements(self.s2, rep=input_shape[1], axis=0)
self.s2 = tf.keras.backend.repeat_elements(self.s2, rep=input_shape[2], axis=1)
self.w2 = tf.keras.backend.repeat_elements(self.w2, rep=input_shape[1], axis=0)
self.w2 = tf.keras.backend.repeat_elements(self.w2, rep=input_shape[2], axis=1)
self.s3 = tf.keras.backend.repeat_elements(self.s3, rep=input_shape[1], axis=0)
self.s3 = tf.keras.backend.repeat_elements(self.s3, rep=input_shape[2], axis=1)
self.w3 = tf.keras.backend.repeat_elements(self.w3, rep=input_shape[1], axis=0)
self.w3 = tf.keras.backend.repeat_elements(self.w3, rep=input_shape[2], axis=1)
self.phi = tf.keras.backend.repeat_elements(self.phi, rep=input_shape[1], axis=0)
self.phi = tf.keras.backend.repeat_elements(self.phi, rep=input_shape[2], axis=1)
super(sinusoid, self).build(input_shape)
def call(self, x):
real_act = GetReal()(x)
imag_act = GetImag()(x)
phase = tf.complex(real_act, imag_act)
phase = tf.angle(phase)
phase_new = (self.w1*(1.0 + tf.cos(phase - self.s1)) + self.w2*(1.0 + tf.cos(2.0*(phase - self.s2))) + self.w3*(1.0 + tf.cos(4.0*(phase - self.s3))))/(K.abs(self.w1) + K.abs(self.w2) + K.abs(self.w3) +0.000005)
phase_new = Lambda(lambda x:x/2)(phase_new)
mag = GetAbs()(x)
mag = Multiply()([mag, phase_new])
phase_new = tf.cos(phase+self.phi)
phase_new = Lambda(lambda x:x)(phase_new)
real_act = Multiply()([mag, phase_new])
phase_new = tf.sin(phase+self.phi)
phase_new = Lambda(lambda x:x)(phase_new)
imag_act = Multiply()([mag, phase_new])
imag_act = K.concatenate([real_act, imag_act], axis=-1)
return imag_act
def resden(x,fil,gr,beta,gamma_init,trainable):
x1=ComplexConv2D(filters=gr,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer='complex',init_criterion='he', bias_initializer = 'zeros')(x)
x1=ComplexBatchNormalization()(x1)
x1=sinusoid()(x1)
x1=Concatenate(axis=-1)([GetReal()(x),GetReal()(x1),GetImag()(x),GetImag()(x1)])
x2=ComplexConv2D(filters=gr,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer='complex', init_criterion='he', bias_initializer = 'zeros')(x1)
x2=ComplexBatchNormalization()(x2)
x2=sinusoid()(x2)
x2=Concatenate(axis=-1)([GetReal()(x1),GetReal()(x2),GetImag()(x1),GetImag()(x2)])
x1=ComplexConv2D(filters=gr,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer='complex', init_criterion='he', bias_initializer = 'zeros')(x2)
x1=ComplexBatchNormalization()(x1)
x1=sinusoid()(x1)
x1=Concatenate(axis=-1)([GetReal()(x2),GetReal()(x1),GetImag()(x2),GetImag()(x1)])
x2=ComplexConv2D(filters=gr,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer='complex', init_criterion='he', bias_initializer = 'zeros')(x1)
x2=ComplexBatchNormalization()(x2)
x2=sinusoid()(x2)
x2=Concatenate(axis=-1)([GetReal()(x1),GetReal()(x2),GetImag()(x1),GetImag()(x2)])
x1=ComplexConv2D(filters=fil,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer='complex', init_criterion='he', bias_initializer = 'zeros')(x2)
x1=Lambda(lambda x:x*beta)(x1)
xout=Add()([x1,x])
return xout
def resresden(x,fil,gr,betad,betar,gamma_init,trainable):
x1=resden(x,fil,gr,betad,gamma_init,trainable)
x1=resden(x1,fil,gr,betad,gamma_init,trainable)
x1=resden(x1,fil,gr,betad,gamma_init,trainable)
x1=Lambda(lambda x:x*betar)(x1)
xout=Add()([x1,x])
return xout
def generator(inp_shape, trainable = True):
gamma_init = tf.random_normal_initializer(1., 0.02)
fd=32
gr=8
nb=4
betad=0.2
betar=0.2
inp_real_imag = Input(inp_shape)
pool_8to7 = AveragePooling2D(pool_size = (2,2), padding = 'same')(inp_real_imag)
pool_8to6 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_8to7)
pool_8to5 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_8to6)
lay_128dn = ComplexConv2D(32, (4,4), strides = (2,2), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(inp_real_imag)
lay_128dn = sinusoid()(lay_128dn)
pool_7to6 = AveragePooling2D(pool_size = (2,2), padding = 'same')(lay_128dn)
pool_7to5 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_7to6)
pool_7to4 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_7to5)
lay_64dn = Concatenate(axis=-1)([GetReal()(pool_8to7), GetReal()(lay_128dn),GetImag()(pool_8to7), GetImag()(lay_128dn)])
lay_64dn = ComplexConv2D(32, (4,4), strides = (2,2), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_64dn)
lay_64dn = ComplexBatchNormalization()(lay_64dn)
lay_64dn = sinusoid()(lay_64dn)
pool_6to5 = AveragePooling2D(pool_size = (2,2), padding = 'same')(lay_64dn)
pool_6to4 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_6to5)
pool_6to3 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_6to4)
lay_32dn = Concatenate(axis=-1)([GetReal()(pool_8to6), GetReal()(pool_7to6), GetReal()(lay_64dn),GetImag()(pool_8to6), GetImag()(pool_7to6), GetImag()(lay_64dn)])
lay_32dn = ComplexConv2D(32, (4,4), strides = (2,2), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_32dn)
lay_32dn = ComplexBatchNormalization()(lay_32dn)
lay_32dn = sinusoid()(lay_32dn)
pool_5to4 = AveragePooling2D(pool_size = (2,2), padding = 'same')(lay_32dn)
pool_5to3 = AveragePooling2D(pool_size = (2,2), padding = 'same')(pool_5to4)
lay_16dn = Concatenate(axis=-1)([GetReal()(pool_8to5), GetReal()(pool_7to5), GetReal()(pool_6to5), GetReal()(lay_32dn),GetImag()(pool_8to5), GetImag()(pool_7to5), GetImag()(pool_6to5), GetImag()(lay_32dn)])
lay_16dn = ComplexConv2D(32, (4,4), strides = (2,2), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_16dn)
lay_16dn = ComplexBatchNormalization()(lay_16dn)
lay_16dn = sinusoid()(lay_16dn)
pool_4to3 = AveragePooling2D(pool_size = (2,2), padding = 'same')(lay_16dn)
lay_8dn = Concatenate(axis=-1)([GetReal()(pool_7to4), GetReal()(pool_6to4), GetReal()(pool_5to4), GetReal()(lay_16dn), GetImag()(pool_7to4), GetImag()(pool_6to4), GetImag()(pool_5to4), GetImag()(lay_16dn)])
lay_8dn = ComplexConv2D(32, (4,4), strides = (2,2), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_8dn)
lay_8dn = ComplexBatchNormalization()(lay_8dn)
lay_8dn = sinusoid()(lay_8dn) #8x8
xc1 = Concatenate(axis=-1)([GetReal()(pool_6to3), GetReal()(pool_5to3), GetReal()(pool_4to3), GetReal()(lay_8dn),GetImag()(pool_6to3), GetImag()(pool_5to3), GetImag()(pool_4to3), GetImag()(lay_8dn)])
xc1=ComplexConv2D(filters=fd,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(xc1)
xrrd=xc1
for m in range(nb):
xrrd=resresden(xrrd,fd,gr,betad,betar,gamma_init,trainable)
xc2=ComplexConv2D(filters=fd,kernel_size=3,strides=1,padding='same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(xrrd)
xc2=Add()([xc1,xc2])
up_3to4 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(xc2)
up_3to5 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(up_3to4)
up_3to6 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(up_3to5)
lay_16up=UpSampling2D()(xc2)
lay_16up = ComplexConv2D(32, (4,4), strides = (1,1), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_16up)
lay_16up = ComplexBatchNormalization()(lay_16up)
lay_16up = sinusoid()(lay_16up) #16x16
up_4to5 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(lay_16up)
up_4to6 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(up_4to5)
up_4to7 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(up_4to6)
lay_32up = Concatenate(axis = -1)([GetReal()(lay_16up),GetReal()(up_3to4),GetReal()(lay_16dn),GetImag()(lay_16up),GetImag()(up_3to4),GetImag()(lay_16dn)])
lay_32up=UpSampling2D()(lay_32up)
lay_32up = ComplexConv2D(32, (4,4), strides = (1,1), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_32up)
lay_32up = ComplexBatchNormalization()(lay_32up)
lay_32up = sinusoid()(lay_32up) #32x32
up_5to6 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(lay_32up)
up_5to7 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(up_5to6)
lay_64up = Concatenate(axis = -1)([GetReal()(lay_32up),GetReal()(up_3to5),GetReal()(up_4to5),GetReal()(lay_32dn),GetImag()(lay_32up),GetImag()(up_3to5),GetImag()(up_4to5),GetImag()(lay_32dn)])
lay_64up=UpSampling2D()(lay_64up)
lay_64up = ComplexConv2D(32, (4,4), strides = (1,1), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_64up)
lay_64up = ComplexBatchNormalization()(lay_64up)
lay_64up = sinusoid()(lay_64up) #64x64
up_6to7 = UpSampling2D(size=(2, 2), data_format=None, interpolation='bilinear')(lay_64up)
lay_128up = Concatenate(axis = -1)([GetReal()(lay_64up),GetReal()(up_3to6),GetReal()(up_4to6),GetReal()(up_5to6),GetReal()(lay_64dn),GetImag()(lay_64up),GetImag()(up_3to6),GetImag()(up_4to6),GetImag()(up_5to6),GetImag()(lay_64dn)])
lay_128up=UpSampling2D()(lay_128up)
lay_128up = ComplexConv2D(32, (4,4), strides = (1,1), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_128up)
lay_128up = ComplexBatchNormalization()(lay_128up)
lay_128up = sinusoid()(lay_128up) #128x128
lay_256up = Concatenate(axis = -1)([GetReal()(lay_128up),GetReal()(up_4to7),GetReal()(up_5to7),GetReal()(up_6to7),GetReal()(lay_128dn),GetImag()(lay_128up),GetImag()(up_4to7),GetImag()(up_5to7),GetImag()(up_6to7),GetImag()(lay_128dn)])
lay_256up=UpSampling2D()(lay_256up)
lay_256up = ComplexConv2D(32, (4,4), strides = (1,1), padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_256up)
lay_256up = ComplexBatchNormalization()(lay_256up)
lay_256up = sinusoid()(lay_256up) #256x256
out1 = ComplexConv2D(1, (1,1), strides = (1,1), activation = 'tanh', padding = 'same', use_bias = True, kernel_initializer = 'complex', init_criterion='he', bias_initializer = 'zeros')(lay_256up)
out2 = GetAbs()(out1)
model = Model(inputs = inp_real_imag, outputs = [out1,out2])
#model.summary()
return model
gen4 = generator(inp_shape = inp_shape, trainable = False)
#to infer after a run
f = open('/home/Co-VeGAN/covegan_a5_metrics.txt', 'x')
f = open('/home/Co-VeGAN/covegan_a5_metrics.txt', 'a')
for i in range(120):
filename = '/home/Co-VeGAN/covegan_a5_gen_%04d.h5' % (i+1)
gen4.load_weights(filename)
psnr_abs=0
ssim_abs=0
psnr_comt = 0
psnr_r=0
psnr_i=0
ssim_r=0
ssim_i=0
for j in range(200):
out_c, out_absj = gen4.predict(data_gen[j*10:(j+1)*10])
psnr, ssim = metrics(data_abs[j*10:(j+1)*10,:,:], out_absj[:,:,:,0],1.41421356237)
psnr_com = psnrc(data_2c[j*10:(j+1)*10,:,:,:], out_c,1.41421356237)
if j==0:
out_ct = out_c
out_abs=out_absj[:,:,:,0]
else:
out_ct = np.append(out_ct, out_c, axis = 0)
out_abs=np.append(out_abs, out_absj[:,:,:,0],axis=0)
psnr_abs+=psnr
ssim_abs+=ssim
psnr_comt+=psnr_com
psnr_abs=psnr_abs/200
ssim_abs=ssim_abs/200
psnr_comt = psnr_comt/200
f.write('psnr_abs = %.5f, ssim_abs = %.7f, psnr_complex = %.5f' %(psnr_abs, ssim_abs, psnr_comt))
f.write('\n')
print(psnr_abs, ssim_abs, psnr_comt)
#to infer a single model
'''
i=30
filename = '/home/Co-VeGAN/covegan_a5_gen_%04d.h5' % (i+1)
gen4.load_weights(filename)
psnr_abs=0
ssim_abs=0
psnr_comt = 0
psnr_r=0
psnr_i=0
ssim_r=0
ssim_i=0
for j in range(200):
out_c, out_absj = gen4.predict(data_gen[j*10:(j+1)*10])
psnr, ssim = metrics(data_abs[j*10:(j+1)*10,:,:], out_absj[:,:,:,0],1.41421356237)
psnr_com = psnrc(data_2c[j*10:(j+1)*10,:,:,:], out_c,1.41421356237)
if j==0:
out_ct = out_c
out_abs=out_absj[:,:,:,0]
else:
out_ct = np.append(out_ct, out_c, axis = 0)
out_abs=np.append(out_abs, out_absj[:,:,:,0],axis=0)
psnr_abs+=psnr
ssim_abs+=ssim
psnr_comt+=psnr_com
psnr_abs=psnr_abs/200
ssim_abs=ssim_abs/200
psnr_comt = psnr_comt/200
print(psnr_abs, ssim_abs, psnr_comt)
'''