-
Notifications
You must be signed in to change notification settings - Fork 5
/
test_all.py
223 lines (206 loc) · 10.8 KB
/
test_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
__author__ = "francois serra"
__email__ = "serra.francois@gmail.com"
__licence__ = "GPLv3"
__version__ = "1.04"
__title__ = "pmodeltest v%s" % __version__
from re import sub
import pmodeltest as pmt
def test_nt():
print('\n START TEST NUCLEOTIDS')
print(' *********************\n\n')
errors = []
data = 'examples/dna.phy'
models = ['JC', 'K80', 'TrNef', 'TPM1', 'TPM2', 'TPM3',
'TIM1ef', 'TIM2ef', 'TIM3ef', 'TVMef', 'SYM',
'F81', 'HKY', 'TrN', 'TPM1uf', 'TPM2uf', 'TPM3uf',
'TIM1', 'TIM2', 'TIM3', 'TVM', 'GTR']
job_list = pmt.get_job_list(data, models, speed=True, protein=False,
verbose=False)
job_list = pmt.run_jobs(job_list, nprocs=8)
job_list = pmt.parse_jobs(job_list, data)
pmt.clean_all (job_list, data)
job_list, ord_aic, _ = pmt.aic_calc(job_list, True, verbose=True)
if not ord_aic == ['TPM1uf+G+F','TPM3uf+G+F','TIM1+G+F','TPM1uf+I+G+F',
'TIM3+G+F','HKY+G+F','TPM3uf+I+G+F','TVM+G+F',
'TIM1+I+G+F','TrN+G+F','TIM3+I+G+F','HKY+I+G+F',
'TPM2uf+G+F','GTR+G+F','TVM+I+G+F','TPM1uf+I+F',
'TPM3uf+I+F','TrN+I+G+F','TIM2+G+F','TPM2uf+I+G+F',
'GTR+I+G+F','TIM1+I+F','TIM3+I+F','HKY+I+F','TIM2+I+G+F',
'TVM+I+F','TrN+I+F','TPM2uf+I+F','GTR+I+F','TIM2+I+F',
'TPM3uf+F','TPM1uf+F','HKY+F','TIM3+F','TIM1+F','TVM+F',
'TrN+F','TPM2uf+F','GTR+F','TIM2+F','F81+G+F',
'F81+I+G+F','SYM+G','SYM+I+G','TVMef+G','TVMef+I+G',
'SYM+I','TIM2ef+G','TIM2ef+I+G','TVMef+I','TPM2+G',
'TPM2+I+G','TIM3ef+G','TIM2ef+I','TIM1ef+G','TIM3ef+I+G',
'TIM1ef+I+G','TPM2+I','TPM3+G','TPM1+G','TIM3ef+I',
'TPM3+I+G','TPM1+I+G','TIM1ef+I','TrNef+G','TrNef+I+G',
'F81+I+F','TPM3+I','TPM1+I','K80+G','TrNef+I','K80+I+G',
'K80+I','F81+F','SYM','TIM2ef','TVMef','TIM3ef','TIM1ef',
'TPM2','TrNef','TPM3','TPM1','K80','JC+G','JC+I+G','JC+I','JC']:
print('Test ordering models: ERROR')
errors.append('ordering models')
else:
print('Test ordering models: OK')
job_list = pmt.re_run(job_list, data, cutoff=0.95, nprocs=2,
verbose=True)
job_list = pmt.parse_jobs(job_list, data)
pmt.clean_all (job_list, data)
if sorted(job_list.keys()) == sorted(['GTR+G+F','HKY+G+F','HKY+I+G+F','TIM1+G+F',
'TIM1+I+G+F','TIM3+G+F','TIM3+I+G+F',
'TPM1uf+G+F','TPM1uf+I+F','TPM1uf+I+G+F',
'TPM2uf+G+F','TPM3uf+G+F','TPM3uf+I+F',
'TPM3uf+I+G+F','TVM+G+F','TVM+I+G+F',
'TrN+G+F','TrN+I+G+F']):
print('Test better models: OK')
else:
print('Test better models: ERROR')
errors.append('better models')
job_list, ord_aic, _ = pmt.aic_calc(job_list, False)
if ord_aic == ['TPM1uf+G+F','TPM3uf+G+F','TIM1+G+F','TPM1uf+I+G+F','TIM3+G+F',
'HKY+G+F','TPM3uf+I+G+F','TVM+G+F','TIM1+I+G+F','TrN+G+F',
'TIM3+I+G+F','HKY+I+G+F','TPM2uf+G+F','GTR+G+F','TVM+I+G+F',
'TPM1uf+I+F','TPM3uf+I+F','TrN+I+G+F']:
print('Test ordering better models: OK')
else:
print('Test ordering better models: ERROR')
errors.append('ordering better models')
expected = {'TrN+I+G+F' : 6051.92212,
'TPM1uf+I+G+F' : 6047.98258,
'TVM+I+G+F' : 6051.17612,
'TIM1+I+G+F' : 6049.6176 ,
'TVM+G+F' : 6049.37942,
'HKY+G+F' : 6048.42828,
'TPM3uf+G+F' : 6046.7577 ,
'TIM3+G+F' : 6048.40978,
'TPM3uf+I+G+F' : 6048.5627 ,
'TIM3+I+G+F' : 6050.20106,
'GTR+G+F' : 6051.01224,
'TrN+G+F' : 6050.122 ,
'TPM2uf+G+F' : 6050.421 ,
'TPM1uf+G+F' : 6046.19414,
'TPM3uf+I+F' : 6051.40916,
'TIM1+G+F' : 6047.84258,
'HKY+I+G+F' : 6050.24122,
'TPM1uf+I+F' : 6051.35094}
for j in expected:
if not round(expected[j],2) == round(job_list[j]['AIC'],2):
print('Test AIC values: ERROR')
errors.append('AIC values')
break
else:
print('Test AIC values: OK')
tree = pmt.re_run_best(ord_aic[0], job_list[ord_aic[0]]['cmd'], data, verbose=True)
job_list = pmt.parse_jobs({ord_aic[0]: job_list[ord_aic[0]]}, data)
pmt.clean_all ({ord_aic[0]: job_list[ord_aic[0]]}, data)
expected_tree = '((((((Macaca_mulatta:0.0117313526,(Alouata_seniculus:0.0190656000,(Pongo_pygmaeus_old_3:0.0030481589,Gorilla_gorilla:0.0020294397)0.9770000000:0.0075362735)0.0000000000:0.0004306512)0.9960000000:0.0172550253,Pan_troglodytes:0.0223821735)0.8640000000:0.0093079991,Trachypithecus_johnii:0.0229373226)1.0000000000:0.0776907115,Procolobus_badius:0.1966057310)0.9970000000:0.0650031999,Trachypithecus_geii:0.0048258029)0.8290000000:0.0030733844,Semnopithecus_entellus:0.0052455542,Callithrix_jacchus:0.0081475480);\n'
expected_tree = sub('(:[0-9]+\.[0-9]{3})[0-9]*','\\1', expected_tree)
expected_tree = sub('(\))[0-9]+\.[0-9]*','\\1', expected_tree)
tree = sub('(:[0-9]+\.[0-9]{3})[0-9]*','\\1', tree)
tree = sub('(\))[0-9]+\.[0-9]*','\\1', tree)
if expected_tree == tree:
print('Testing final topology: OK')
else:
print('Testing final topology: ERROR')
errors.append('Different final trees')
print(expected_tree)
print(tree)
print('\n\n\n TEST NUCLEOTIDES FINISHED\n\n')
if errors:
print('ERROR founds:')
for e in errors:
print(e)
else:
print(' -> ALL TEST OK')
print('\n\nas last check, have a look to jmodeltest result in test folder')
#print ''.join([l for l in open('test/jmodeltest0.1_out.txt')])
def test_aa():
print('\n START TEST AMINO-ACIDS')
print(' **********************\n\n')
errors = []
data = 'examples/protein.phy'
models = ['LG', 'WAG', 'JTT', 'MtREV', 'Dayhoff', 'DCMut',
'RtREV', 'CpREV', 'VT', 'Blosum62', 'MtMam',
'MtArt', 'HIVw', 'HIVb']
job_list = pmt.get_job_list(data, models, speed=True, protein=True,
verbose=False) # here verbose prints all command lines
job_list = pmt.run_jobs(job_list, nprocs=2)
job_list = pmt.parse_jobs(job_list, data)
pmt.clean_all (job_list, data)
job_list, ord_aic = pmt.aic_calc(job_list, True, verbose=True)
if not ord_aic == ['Dayhoff+G','DCMut+G','Dayhoff+I+G','DCMut+I+G',
'Dayhoff+I','DCMut+I','Dayhoff+G+F','DCMut+G+F',
'LG+G+F','Dayhoff+I+G+F','DCMut+I+G+F','LG+I+G+F',
'Dayhoff+I+F','DCMut+I+F','LG+I+F','WAG+G','WAG+I+G',
'WAG+I','Dayhoff','DCMut','WAG+G+F','RtREV+G+F','LG+G',
'WAG+I+G+F','WAG+I+F','RtREV+I+G+F','LG+I+G','RtREV+I+F',
'JTT+G+F','JTT+I+G+F','LG+I','JTT+I+F','JTT+G','JTT+I+G',
'Dayhoff+F','DCMut+F','CpREV+G+F','LG+F','JTT+I',
'CpREV+I+G+F','CpREV+I+F','WAG','WAG+F','MtArt+G+F',
'MtArt+I+G+F','RtREV+F','MtREV+G+F','JTT+F','MtREV+I+G+F',
'LG','HIVb+G+F','HIVb+I+G+F','MtREV+I+F','Blosum62+G+F',
'MtArt+I+F','JTT','Blosum62+I+G+F','Blosum62+I+F','CpREV+F',
'RtREV+G','HIVb+I+F','RtREV+I+G','CpREV+G','Blosum62+G',
'VT+G','RtREV+I','CpREV+I+G','Blosum62+I+G','VT+G+F',
'VT+I+G','CpREV+I','Blosum62+I','VT+I+G+F','VT+I','VT+I+F',
'MtMam+G+F','MtMam+I+G+F','Blosum62+F','MtREV+F','Blosum62',
'RtREV','MtMam+I+F','VT+F','VT','CpREV','MtArt+F','HIVb+F',
'HIVb+G','HIVb+I+G','HIVb+I','HIVw+G+F','HIVw+I+G+F',
'MtMam+F','HIVw+I+F','HIVb','MtREV+G','MtREV+I+G','MtArt+G','MtArt+I+G','MtREV+I','HIVw+F','MtArt+I','MtMam+G','MtMam+I+G','MtREV','HIVw+G','HIVw+I+G','MtMam+I','HIVw+I','MtArt','HIVw','MtMam']:
print('Test ordering models: ERROR')
errors.append('ordering models')
else:
print('Test ordering models: OK')
job_list = pmt.re_run(job_list, data, cutoff=0.95, nprocs=2, verbose=True)
job_list = pmt.parse_jobs(job_list, data)
pmt.clean_all (job_list, data)
if sorted(job_list.keys()) == sorted(['Dayhoff+G', 'DCMut+I+G', 'DCMut+G', 'Dayhoff+I+G']):
print('Test better models: OK')
else:
print('Test better models: ERROR')
errors.append('better models')
job_list, ord_aic = pmt.aic_calc(job_list, False)
if ord_aic == ['Dayhoff+G', 'DCMut+G', 'Dayhoff+I+G', 'DCMut+I+G']:
print('Test ordering better models: OK')
else:
print('Test ordering better models: ERROR')
errors.append('ordering better models')
expected = {'DCMut+G' : 3389.69506,
'DCMut+I+G' : 3391.46964,
'Dayhoff+G' : 3389.14838,
'Dayhoff+I+G': 3390.9257}
for j in expected:
if not round(expected[j],2) == round(job_list[j]['AIC'],2):
print('Test AIC values: ERROR')
print(j, job_list[j]['AIC'], round(job_list[j]['AIC'],2))
errors.append('AIC values')
break
else:
print('Test AIC values: OK')
tree = pmt.re_run_best(ord_aic[0], job_list[ord_aic[0]]['cmd'], data, verbose=True)
pmt.clean_all ({ord_aic[0]: job_list[ord_aic[0]]}, data)
expected_tree = '((human:0.0563158672,(rat:0.2056794657,rabbit:0.0839307491)0.7670000000:0.0369524233)0.6450000000:0.0289065340,marsupial:0.2993530194,cow:0.1082479462);\n'
expected_tree = sub('(:[0-9]+\.[0-9]{3})[0-9]*','\\1', expected_tree)
expected_tree = sub('(\))[0-9]+\.[0-9]*','\\1', expected_tree)
tree = sub('(:[0-9]+\.[0-9]{3})[0-9]*','\\1', tree)
tree = sub('(\))[0-9]+\.[0-9]*','\\1', tree)
if expected_tree == tree:
print('Testing final topology: OK')
else:
print('Testing final topology: ERROR')
errors.append('Different final trees')
print(expected_tree)
print(tree)
print('\n\n\n TEST PROTEIN FINISHED\n\n')
if errors:
print('ERROR founds:')
for e in errors:
print(e)
else:
print(' -> ALL TEST OK')
print('\n\nas last check, have a look to jmodeltest result in test folder')
#print ''.join([l for l in open('test/prottest3_out.txt')])
def main():
test_nt()
test_aa()
if __name__ == "__main__":
main()