-
Notifications
You must be signed in to change notification settings - Fork 593
/
bitcoin_unlimited_style_sizelimits.py
executable file
·166 lines (152 loc) · 6.59 KB
/
bitcoin_unlimited_style_sizelimits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# The purpose of this script is to create an evolutionary
# model to study the equilibrium effects of Bitcoin Unlimited-style
# "emergent consensus". Note that the model is not yet quite
# complete as it does not take into account the benefits of
# mining "sister blocks" that steal transaction fees, though it
# does give a rough idea of what equilibrium behavior
# among the various miner policy dimensions (block accept size,
# override depth, block creation size) looks like
import random
# Block reward
REWARD = 1000
# Call this function to get a tx with the right fee
TX_FEE_DISTRIBUTION = lambda: (10000 // random.randrange(5, 250)) * 0.01
# TX_FEE_DISTRIBUTION = lambda: 20
# Propagation time
PROPTIME_FACTOR = 1
# List of tuples:
# (default limit, n-block limit, acceptance depth, creation limit)
strategies = []
for i in range(4):
for j in range(4):
strategies.append([2 + i * 2, 100, 3, 10 + j * 4])
class Block():
def __init__(self, parent, size, fees, miner):
self.hash = random.randrange(10**20)
self.parent = parent
self.score = 1 if self.parent is None else parent.score + 1
self.miner = miner
self.size = size
self.fees = fees
class Miner():
def __init__(self, strategy, id):
self.limit, self.big_limit, self.accept_depth, self.creation_limit = strategy
self.chain = {}
self.big_chain = {}
self.head = None
self.big_head = None
self.id = id
self.future = {}
self.children = {}
self.created = 0
def process_history(self, time):
deletes = []
for t in self.future:
if t <= time:
for b in self.future[t]:
self.process_block(b)
deletes.append(t)
for t in deletes:
del self.future[t]
def add_block(self, block, time):
self.process_history(time)
if time + int(block.size * PROPTIME_FACTOR) not in self.future:
self.future[time + int(block.size * PROPTIME_FACTOR)] = [block]
else:
self.future[time + int(block.size * PROPTIME_FACTOR)].append(block)
def process_block(self, block):
if block.size <= self.limit and (block.parent is None or block.parent.hash in self.chain):
self.chain[block.hash] = block
if block.score > (self.head.score if self.head else 0):
self.head = block
if block.size <= self.big_limit and (block.parent is None or block.parent.hash in self.big_chain):
self.big_chain[block.hash] = block
if block.score > (self.big_head.score if self.big_head else 0):
self.big_head = block
if block.score > (self.head.score if self.head else 0) + self.accept_depth:
self.head = block
self.chain[block.hash] = block
if block.parent and block.parent.hash not in self.chain and block.parent.hash not in self.big_chain:
if block.parent.hash not in self.children:
self.children[block.parent.hash] = [block]
else:
self.children[block.parent.hash].append(block)
if block.hash in self.children:
for c in self.children[block.hash]:
self.process_block(c)
del self.children[block.hash]
def create_block(self, backlog, time):
self.process_history(time)
fees = sum(backlog[:self.creation_limit])
# print 'Creating block of size %d (fees %d, seq %d)' % (self.creation_limit, fees, self.head.score + 1 if self.head else 1)
self.created += 1
return Block(self.head, self.creation_limit, fees, self.id)
def simulate(strats):
miners = [Miner(strat, i) for i, strat in enumerate(strats)]
backlog = []
for i in range(100000):
if i % 10000 == 0:
print 'Progress %d' % i
backlog.append(TX_FEE_DISTRIBUTION())
if random.random() < 0.01:
backlog = sorted(backlog)[::-1]
miner = random.choice(miners)
b = miner.create_block(backlog, i)
backlog = backlog[b.size:]
for m in miners:
m.add_block(b, i)
rewards = [0] * len(miners)
blocks = [0] * len(miners)
h = miners[0].head
sz = 0
while h is not None:
rewards[h.miner] += REWARD + h.fees
blocks[h.miner] += 1
h = h.parent
sz += 1
return rewards, blocks, [m.created for m in miners]
for r in range(200):
tests = []
for s in strategies:
tests.append(s)
tests.append((s[0] - 2, s[1], s[2], s[3]))
tests.append((s[0] + 2, s[1], s[2], s[3]))
tests.append((s[0], s[1], s[2] - 1, s[3]))
tests.append((s[0], s[1], s[2] + 1, s[3]))
tests.append((s[0], s[1], s[2], s[3] - 2))
tests.append((s[0], s[1], s[2], s[3] + 2))
NUM_TESTS = 7
print 'Starting simulation'
results, blks, created = simulate(tests)
for i, s in enumerate(strategies):
base = results[i * NUM_TESTS]
if results[i * NUM_TESTS + 1] < base < results[i * NUM_TESTS + 2]:
print 'Increasing base accept size beneficial at %r' % s
s[0] += 2
if results[i * NUM_TESTS + 1] > base > results[i * NUM_TESTS + 2] and s[0] > 2:
print 'Decreasing base accept size beneficial at %r' % s
s[0] -= 2
if results[i * NUM_TESTS + 3] < base < results[i * NUM_TESTS + 4]:
print 'Increasing override depth beneficial at %r' % s
s[2] += 1
if results[i * NUM_TESTS + 3] > base > results[i * NUM_TESTS + 4] and s[2] > 1:
print 'Decreasing override depth beneficial at %r' % s
s[2] -= 1
if results[i * NUM_TESTS + 5] < base < results[i * NUM_TESTS + 6]:
print 'Increasing creation size beneficial at %r' % s
s[3] += 2
if results[i * NUM_TESTS + 5] > base > results[i * NUM_TESTS + 6] and s[3] > 2:
print 'Decreasing creation size beneficial at %r' % s
s[3] -= 2
for s in strategies:
print s
print 'Chain quality (per miner):', [(b * 100 / c) if c else 0 for b, c in zip(blks, created)]
print 'Chain quality (total, non-perturbed miners only):', sum(blks[::NUM_TESTS]) * 1.0 / sum(created[::NUM_TESTS])
if r % 20 == 0:
print 'Control round'
results, blks, created = simulate(strategies)
print 'Chain quality (per miner):', [(b * 100 / c) if c else 0 for b, c in zip(blks, created)]
print 'Chain quality (total):', sum(blks) * 1.0 / sum(created)
# results = simulate(strategies)
# for s, r in zip(strategies, results):
# print s[0], s[3], r