-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConstraint.ml
executable file
·326 lines (272 loc) · 10.2 KB
/
Constraint.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
(*****************************************************************
*
* IMPERATOR
*
* Compiler from IMPERATOR file to OCaml
*
* Laboratoire Specification et Verification (ENS Cachan & CNRS, France)
* Author: Etienne Andre
* Created: 24/03/2009
* Last modified: 22/04/2009
*
****************************************************************)
(****************************************************************)
(** Modules *)
(****************************************************************)
open Global
open Num
(****************************************************************)
(** Modules *)
(****************************************************************)
exception InvalidInequality
(****************************************************************)
(** Types *)
(****************************************************************)
(* A constant is a rational *)
type constant = Num.num
(* A coeff is a rational *)
type coeff = Num.num
(* A right / left member of an inequality is an array variable_index -> coeff, and a constant *)
type member = coeff array * constant
(* Operators *)
type op =
(* Lower *)
| Op_l
(* Lower or equal *)
| Op_le
(* Equal *)
| Op_eq
(* Greater or equal *)
| Op_ge
(* Greater *)
| Op_g
(* Operators for inequality *)
type op_ineq =
(* Equal *)
| Opi_eq
(* Greater or equal *)
| Opi_ge
(* Greater *)
| Opi_g
(* An inequality is a member and an operator (member op 0) *)
type inequality = member * op_ineq
(* A constraint is a list of inequalities *)
type constr = inequality list
(****************************************************************)
(** Operation on members *)
(****************************************************************)
(* Return the member equal to -member *)
(*
let opposite (monomial_array, constant) =
(* Minus the monomials *)
let monomial_array_opposite = Array.map Num.minus_num monomial_array in
(* Minus the constant *)
let constant_opposite = Num.minus_num constant in
(* Return the monomials and the constant *)
monomial_array_opposite, constant_opposite
*)
(* Return a fresh new member as the product of a member by a scalar *)
let mult_member (monomial_array, constant) scalar =
(* Multiply the monomials *)
let monomial_array_mult = Array.map (fun coeff -> coeff */ scalar) monomial_array in
(* Multiply the constant *)
let constant_mult = constant */ scalar in
(* Return the monomials and the constant *)
monomial_array_mult, constant_mult
(* Return a fresh new member as the sum of two members (on the same set of variables) *)
let add_members (monomial_array1, constant1) (monomial_array2, constant2) =
let n = Array.length monomial_array1 in
(* Check the size *)
if n <> Array.length monomial_array2
then raise (InternalError "Two members must have the same size to be added");
(* Compute the sum of monomials *)
let monomial_array = Array.make n (Num.num_of_int 0) in
for i = 0 to n-1 do
monomial_array.(i) <- monomial_array1.(i) +/ monomial_array2.(i);
done;
(* Compute the sum of constants *)
let constant = constant1 +/ constant2 in
(* Return the monomials and the constant *)
monomial_array, constant
(* Return a fresh new member as the substraction of two members (on the same set of variables) *)
let sub_members (monomial_array1, constant1) (monomial_array2, constant2) =
let n = Array.length monomial_array1 in
(* Check the size *)
if n <> Array.length monomial_array2
then raise (InternalError "Two members must have the same size to be sub");
(* Compute the sum of monomials *)
let monomial_array = Array.make n (Num.num_of_int 0) in
for i = 0 to n-1 do
monomial_array.(i) <- monomial_array1.(i) -/ monomial_array2.(i);
done;
(* Compute the substraction of constants *)
let constant = constant1 -/ constant2 in
(* Return the monomials and the constant *)
monomial_array, constant
(* Instantiate a member with an array variable_index -> value *)
let instantiate_member (monomial_array, constant) value =
(* Start with constant *)
let sum = ref constant in
(* Iterate on monomials *)
Array.iteri (fun variable_index coeff ->
sum := !sum +/ value.(variable_index) */ coeff;
) monomial_array;
(* Return sum *)
!sum
(****************************************************************)
(** Functions on inequalities *)
(****************************************************************)
(* Compute the real comparison function from a op_ineq *)
let real_op = function
(* Equal *)
| Opi_eq -> (=/)
(* Greater or equal *)
| Opi_ge -> (>=/)
(* Greater *)
| Opi_g -> (>/)
(* Convert an expression member op member into member' op' 0 *)
let make_inequality left op right =
match op with
(* left < right <=> -left + right > 0 *)
| Op_l -> sub_members right left, Opi_g
(* left <= right <=> -left + right >= 0 *)
| Op_le -> sub_members right left, Opi_ge
(* left = right <=> -left + right = 0 *)
| Op_eq -> sub_members right left, Opi_eq
(* left >= right <=> left - right >= 0 *)
| Op_ge -> sub_members left right, Opi_ge
(* left > right <=> left - right > 0 *)
| Op_g -> sub_members left right, Opi_g
(* Return true if an inequality is constant, and raise InvalidInequality if constant op 0 is invalid *)
let constant_inequality ((monomial_array, constant), op) =
(* Check if the monomial_array is empty *)
let all_zero = List.for_all (fun elem -> elem = (Num.num_of_int 0)) (Array.to_list monomial_array) in
(* If not constant : false *)
if not all_zero then false
(* Check validity *)
else if not ((real_op op) constant (Num.num_of_int 0)) then
raise InvalidInequality
(* If constant and valid : true *)
else true
(*
(* Return true if an inequality is weaker than another one *)
let is_weaker ((monomial_array1, constant1), op1) ((monomial_array2, constant2), op2) =
(* Compare op *)
op1
*)
let is_equal ((monomial_array1, constant1), op1) ((monomial_array2, constant2), op2) =
(* Compare op *)
op1 = op2 &
(* Compare constants *)
constant1 =/ constant2 &
(* Compare arrays *)
let equal = ref true in
let i = ref 0 in
while !i < (Array.length monomial_array1) do
(* If different : stop *)
if monomial_array1.(!i) <>/ monomial_array2.(!i) then(
equal := false;
i := Array.length monomial_array1;
);
i := !i + 1;
done;
!equal
(****************************************************************)
(** Functions on constraints *)
(****************************************************************)
(* Add a constraint in head of a list of inequalities, if not already subsumed *)
let add_inequality inequality constr =
(* If constant (may raise InvalidInequality), do not add *)
if constant_inequality inequality then constr else
(* Name the inequality *)
(* let ((monomial_array, constant), op) = inequality in*)
(* If the inequality is equal to another one, do not add *)
if List.exists (fun some_ineq -> is_equal some_ineq inequality) constr then constr else
(* Else add in head *)
inequality :: constr
(* TO DO potentiellement faisable : verifier si une contrainte = une autre a un coeff pres
verifier si une autre est plus faible ou plus forte *)
(****************************************************************)
(** Conversion to string *)
(****************************************************************)
(* Type of constraint printing *)
type print_type =
| ExactValue
| ApproximateValue
(* Convert a Num.num to a string *)
let string_of_number print_type number =
match print_type with
| ExactValue -> Num.string_of_num number
| ApproximateValue -> string_of_float (Num.float_of_num number)
(* Convert an operator into a string *)
let string_of_op = function
(* Equal *)
| Opi_eq -> "="
(* Greater or equal *)
| Opi_ge -> ">="
(* Greater *)
| Opi_g -> ">"
(* Convert a member into a string *)
let string_of_member print_type variable_names (monomial_array, constant) =
(* First monomial ? *)
let first = ref true in
(* The result string *)
let result = ref "" in
(* Iterate on the variables *)
for variable_index = 0 to Array.length monomial_array - 1 do
let coeff = monomial_array.(variable_index) in
(* Do not consider coeff equal to 0 *)
if coeff <>/ (Num.num_of_int 0) then(
(* Add a ' + ' to the result except if first monomial *)
if !first then(
first := false;
(* Sign of the coeff if < 0 *)
let sign = if coeff >=/ (Num.num_of_int 0) then "" else "-" in
result := !result ^ sign ^ " ";
)else(
(* Sign of the coeff *)
let sign = if coeff >=/ (Num.num_of_int 0) then "+" else "-" in
result := !result ^ " " ^ sign ^ " ";
);
result := !result
^ (if coeff = (Num.num_of_int 1) or coeff = (Num.num_of_int (-1)) then "" else (string_of_number print_type (Num.abs_num coeff) ^ " * "))
^ variable_names.(variable_index);
)
done;
(* Convert the constant, if non null OR no variables where printed *)
if constant <>/ (Num.num_of_int 0) or !first then(
(* Sign of the constant *)
let sign = if constant >=/ (Num.num_of_int 0) then "+" else "-" in
(* Add the sign if not first or < 0 *)
if not !first or constant <=/ (Num.num_of_int 0) then (result := !result ^ " " ^ sign ^ " ");
result := !result ^ (string_of_number print_type (Num.abs_num constant))
);
!result
(* Convert an inequality into a string *)
let string_of_inequality print_type variable_names (member, op) =
(string_of_member print_type variable_names member)
^ " " ^ (string_of_op op) ^ " 0"
(* ^ (string_of_member variable_names right)*)
(* Convert a constraint into a string *)
let string_of_constraint print_type variable_names c =
let rec string_of_constraint_rec = function
| [] -> ""
| ineq :: list_of_ineq -> "\n & " ^ (string_of_inequality print_type variable_names ineq)
^ (string_of_constraint_rec list_of_ineq)
in
match c with
| [] -> ""
| ineq :: list_of_ineq -> (string_of_inequality print_type variable_names ineq)
^ (string_of_constraint_rec list_of_ineq)
(* Convert a member into a string with exact value*)
let string_of_exact_member =
string_of_member ExactValue
(* Convert an inequality into a string with exact value*)
let string_of_exact_inequality =
string_of_inequality ExactValue
(* Convert a constraint into a string with exact value *)
let string_of_exact_constraint =
string_of_constraint ExactValue
(* Convert a constraint into a string with approximate value *)
let string_of_approximate_constraint =
string_of_constraint ApproximateValue