-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_test.py
38 lines (34 loc) · 1.46 KB
/
run_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import wandb
import argparse
import torch # noqa
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from cleanrnns.datamodules import NSMC
from cleanrnns.fetchers import fetch_config, fetch_tokenizer, fetch_model_for_classification
from cleanrnns.paths import ROOT_DIR
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
def main():
parser = argparse.ArgumentParser()
parser.add_argument("model", type=str)
parser.add_argument("--num_workers", type=int, default=os.cpu_count())
parser.add_argument("--fast_dev_run", action="store_true", default=False)
args = parser.parse_args()
# prepare the datamodule
config = fetch_config()[args.model]
config.update(vars(args))
with wandb.init(project="the-clean-rnns", config=config) as run:
# --- prepare a pre-trained tokenizer & a module to train --- #
tokenizer = fetch_tokenizer(run)
model = fetch_model_for_classification(config['model'], run)
datamodule = NSMC(config, tokenizer, run)
logger = WandbLogger(log_model=False)
trainer = pl.Trainer(fast_dev_run=config['fast_dev_run'],
gpus=torch.cuda.device_count(),
default_root_dir=str(ROOT_DIR),
enable_checkpointing=False,
logger=logger)
# start testing
trainer.test(model=model, datamodule=datamodule)
if __name__ == '__main__':
main()