-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
125 lines (118 loc) · 5.49 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/**
* check point 3D is in ellipsoid
*/
const CONSTANTS = require('./constants/');
const MATH = require('./math/');
const CORE = require('./math/core/');
const MATRIX = require('./math/matrix/');
const Matrix3D = MATRIX.Matrix3D;
const Vector3D = MATRIX.Vector3D;
const Point3D = MATRIX.Point3D;
const PI = CONSTANTS.PI;
const DEG2RAD = CONSTANTS.MATH.DEG2RAD;
const required = CONSTANTS.required;
/**
* Import core functions
*/
const round = CORE.round;
const min = CORE.min;
const log = CORE.log;
const max = CORE.max;
const pow = CORE.pow;
const sqrt = CORE.sqrt;
const abs = CORE.abs;
const sin = CORE.sin;
const cos = CORE.cos;
const tan = CORE.tan;
const asin = CORE.asin;
const acos = CORE.acos;
const atan = CORE.atan;
const atan2 = CORE.atan2;
const floor = CORE.floor;
const randomInteger = CORE.randomInteger;
const isWithin = CORE.isWithin;
const calculateMiddle = CORE.calculateMiddle;
const mod = CORE.mod;
const clamp = CORE.clamp;
const spread = CORE.spread;
const extrapolate_range_clamp = CORE.extrapolate_range_clamp;
const generateRandomOctalWithLength = CORE.generateRandomOctalWithLength;
const TEST = true;
/**
* Classic point in ellipsoid check: the ellipsoid centered at origo, and not oriented anyhow.
* The point is represented by a vector from origo. Using the basic equation: x^2/a^2 + y^2/b^2 + z^2/c^2 = 1.
* @function Classic_Point_In_Ellipsoid
* @param p {Vector3D}
* @param a {Number} axis A
* @param b {Number} axis B
* @param c {Number} axis C
*/
const Classic_Point_In_Ellipsoid = (p = new Vector3D, a = 2, b = 2, c = 2) => {
let ec = new Vector3D();
let v = Vector3D.subtract(ec, p);
return (((v._vector[0] * v._vector[0]) / (a * a)) + ((v._vector[1] * v._vector[1]) / (b * b)) + ((v._vector[2] * v._vector[2]) / (c * c))) <= 1;
};
/**
* Classic point in ellipsoid check: the ellipsoid centered at ec {Vector3D}, and still not oriented anyhow.
* The point is represented by a vector from origo. Using the basic equation: x^2/a^2 + y^2/b^2 + z^2/c^2 = 1.
* @function Classic_Point_In_Ellipsoid
* @param ec {Vector3D}
* @param p {Vector3D}
* @param a {Number} axis A
* @param b {Number} axis B
* @param c {Number} axis C
*/
const Classic_Point_In_Ellipsoid_Relocated = (ec = new Vector3D, p = new Vector3D, a = 2, b = 2, c = 2) => {
//let ec = new Vector3D();
let v = Vector3D.subtract(ec, p);
return (((v._vector[0] * v._vector[0]) / (a * a)) + ((v._vector[1] * v._vector[1]) / (b * b)) + ((v._vector[2] * v._vector[2]) / (c * c))) <= 1;
}
/**
* PointInOrientedEllipse checks if point 3D is inside the oriented positioned ellipsoid
* @function PointInOrientedEllipse
* @param center {Vector3D} the center of the ellipsoid
* @param point {Point3D} the point will be checked if it is located inside the ellipsoid
* @param a {Number} X axis of the ellipsoid
* @param b {Number} Y axis of the ellipsoid
* @param c {Number} Z axis of the ellipsoid
* @param angleX {Number} - roll, range [-PI/2..PI/2] in decimal degrees - negative value left roll, otherwise right roll
* @param angleY {Number} - pitch, range [-PI/2..PI/2] in decimal degrees - negative value down, otherwise up
* @param angleZ {Number} - yaw, range [-PI..PI] in decimal degrees - negative value CCW turn, otherwise CW turn
*/
const PointInOrientedEllipsoid = (center = new Vector3D, point = new Point3D, a = 2, b = 1, c = 1, angleX = 0, angleY = 0, angleZ = 0) => {
let R = new Matrix3D;
let MR = Matrix3D.rotate(R, angleX, angleY, angleZ);
let MR_RX = Matrix3D.rotateX(R,angleX);
let MR_RY = Matrix3D.rotateY(R,angleY);
let MR_RZ = Matrix3D.rotateZ(R,angleZ);
let MRS = Matrix3D.multiplySeries(MR_RZ, MR_RY, MR_RX);
let VDIFF = Vector3D.subtract(point,center);
let VR = Matrix3D.multiplyP3(MRS, VDIFF);
let result = ((VR._vector[0]*VR._vector[0]) / (a*a)) + ((VR._vector[1]*VR._vector[1]) / (b*b)) + ((VR._vector[2]*VR._vector[2]) / (c*c));
return ({
distance: result,
inside: result <= 1,
rMatrix: MRS,
R: MR
});
};
if (TEST) {
let cx = 0;
let cy = 0;
let cz = 0;
let a = 4;
let b = 2;
let c = 2;
//----------------
let roll = 0; // ROLL : negative alpha CCW turn/roll to left, positive alpha CW roll to right
let pitch = 0; // PITCH: negative betha turns positive X axis down direction meanwhile the other end goes upward: so, the range [-PI .. 0 .. PI]
let yaw = 0; // YAW : negative gamma means CCW turn (eg. heading angles between [180 .. 360], positive gamma means CW turn eg. [0..180])
let V0 = new Vector3D(cx, cy, cz);
let VP = new Vector3D(2,1,0);
let obj = PointInOrientedEllipsoid(V0, VP, a, b, c, roll, pitch, yaw);
console.log("obj", obj);
}
//
exports.PointInOrientedEllipsoid = PointInOrientedEllipsoid;
exports.Classic_Point_In_Ellipsoid = Classic_Point_In_Ellipsoid;
exports.Classic_Point_In_Ellipsoid_Relocated = Classic_Point_In_Ellipsoid_Relocated;