-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransform.fxh
254 lines (213 loc) · 5.73 KB
/
transform.fxh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#define TRANSFORM_FXH
////////////////////////////////////////////////////////////////
//
// Transformation Functions
//
////////////////////////////////////////////////////////////////
#ifndef PI
#define PI 3.1415926535897932
#endif
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
//
// Helpers
//
////////////////////////////////////////////////////////////////
float3 getPos(float4x4 m) {return float3(m._41,m._42,m._43);}
float3 getScale(float4x4 m) {return float3(length(float3(m._11, m._12, m._13)), length(float3(m._21, m._22, m._23)), length(float3(m._31, m._32, m._33)));}
float4x4 identity4x4()
{
float4x4 m = { 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1 };
return m;
}
float3x3 identity3x3()
{
float3x3 m = { 1, 0, 0,
0, 1, 0,
0, 0, 1, };
return m;
}
float4x4 as4x4(float3x3 m)
{
float4x4 newM = {m._11, m._12, m._13, 0,
m._21, m._22, m._23, 0,
m._31, m._32, m._33, 0,
0, 0, 0, 1 };
return newM;
}
float3x3 lookat(float3 dir,float3 up=float3(0,1,0)){float3 z=normalize(dir);float3 x=normalize(cross(up,z));float3 y=normalize(cross(z,x));return float3x3(x,y,z);}
float4x4 lookat4x4(float3 dir,float3 up=float3(0,1,0))
{
return as4x4(lookat(dir, up));
}
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
//
// Transformations
//
////////////////////////////////////////////////////////////////
float4x4 scaleM (float3 scale, float4x4 m)
{
m._11 *= scale.x; m._21 *= scale.x; m._31 *= scale.x; m._41 *= scale.x;
m._12 *= scale.y; m._22 *= scale.y; m._32 *= scale.y; m._42 *= scale.y;
m._13 *= scale.z; m._23 *= scale.z; m._33 *= scale.z; m._43 *= scale.z;
return m;
}
float4x4 translateM (float3 pos,float4x4 m)
{
float4x4 mT = identity4x4();
mT._41 = pos.x;
mT._42 = pos.y;
mT._43 = pos.z;
return mul(mT, m);
}
float3x3 rot3x3(float pitch, float yaw, float roll)
{
float3 z=float3(-pitch,yaw,-roll)*acos(-1)*2;float3 x=cos(z),y=sin(z);
return float3x3(x.y*x.z+y.x*y.y*y.z,-x.x*y.z,y.x*x.y*y.z-y.y*x.z,x.y*y.z-y.x*y.y*x.z,x.x*x.z,-y.y*y.z-y.x*x.y*x.z,x.x*y.y,y.x,x.x*x.y);
}
float3x3 rot3x3(float3 rotation)
{
float3 z=float3(-rotation.x,rotation.y,-rotation.z)*acos(-1)*2;float3 x=cos(z),y=sin(z);
return float3x3(x.y*x.z+y.x*y.y*y.z,-x.x*y.z,y.x*x.y*y.z-y.y*x.z,x.y*y.z-y.x*y.y*x.z,x.x*x.z,-y.y*y.z-y.x*x.y*x.z,x.x*y.y,y.x,x.x*x.y);
}
float4x4 rot4x4(float pitch, float yaw, float roll)
{
return as4x4(rot3x3(pitch, yaw, roll));
}
float4x4 rot4x4(float3 rotation)
{
return as4x4(rot3x3(rotation));
}
float3 rX(float3 p, float a)
{
float c,s;float3 q=p;
c = cos(a); s = sin(a);
p.y = c * q.y - s * q.z;
p.z = s * q.y + c * q.z;
return p;
}
float3 rY(float3 p, float a)
{
float c,s;float3 q=p;
c = cos(a); s = sin(a);
p.x = c * q.x + s * q.z;
p.z = -s * q.x + c * q.z;
return p;
}
float3 rZ(float3 p, float a)
{
float c,s;float3 q=p;
c = cos(a); s = sin(a);
p.x = c * q.x - s * q.y;
p.y = s * q.x + c * q.y;
return p;
}
float3 rCX(float3 p, float a,float3 ce)
{
float c,s;float3 q=p-ce;
c = cos(a); s = sin(a);
p.y = c * q.y - s * q.z;
p.z = s * q.y + c * q.z;
return p+ce;
}
float3 rCY(float3 p, float a,float3 ce)
{
float c,s;float3 q=p-ce;
c = cos(a); s = sin(a);
p.x = c * q.x + s * q.z;
p.z = -s * q.x + c * q.z;
return p+ce;
}
float3 rCZ(float3 p, float a,float3 ce)
{
float c,s;float3 q=p-ce;
c = cos(a); s = sin(a);
p.x = c * q.x - s * q.y;
p.y = s * q.x + c * q.y;
return p+ce;
}
////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////
//
// Quaternions
//
////////////////////////////////////////////////////////////////
float4 invertQuat(float4 q)
{
return float4(-q.x, -q.y, -q.z, q.w);
}
float4 mulQuat(float4 q1, float4 q2)
{
return float4
(
q1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,
q1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,
q1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,
q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z
);
}
float3x3 qRot3x3(float4 q)
{
float3x3 m = identity3x3();
m[0][0] = 1 - 2*q.y*q.y - 2*q.z*q.z;
m[0][1] = 2*q.x*q.y + 2*q.w*q.z;
m[0][2] = 2*q.x*q.z - 2*q.w*q.y;
m[1][0] = 2*q.x*q.y - 2*q.w*q.z;
m[1][1] = 1 - 2*q.x*q.x - 2*q.z*q.z;
m[1][2] = 2*q.y*q.z + 2*q.w*q.x;
m[2][0] = 2*q.x*q.z + 2*q.w*q.y;
m[2][1] = 2*q.y*q.z - 2*q.w*q.x;
m[2][2] = 1 - 2*q.x*q.x - 2*q.y*q.y;
return m;
}
float4x4 qRot4x4(float4 q)
{
return as4x4(qRot3x3(q));
}
float4 slerp (float4 a, float4 b, float t )
{
if ( t <= 0.0f )
{
return a;
}
if ( t >= 1.0f )
{
return b;
}
float coshalftheta = dot(a, b);
//coshalftheta = std::min (1.0f, std::max (-1.0f, coshalftheta));
float4 c = b;
// Angle is greater than 180. We can negate the angle/quat to get the
// shorter rotation to reach the same destination.
if ( coshalftheta < 0.0f )
{
coshalftheta = -coshalftheta;
c = -c;
}
if ( coshalftheta > 0.99f )
{
// Angle is tiny - save some computation by lerping instead.
float4 r = lerp(a, c, t);
return r;
}
float halftheta = acos(coshalftheta);
float sintheta = sin(halftheta);
return (sin((1.0f - t) * halftheta) * a + sin(t * halftheta) * c) / sin(halftheta);
}
float4 axisAngle2Quat(float3 a, float r)
{
float4 res = 0;
float sinr = sin( r*PI );
float cosr = cos( r*PI );
res.x = a.x * sinr;
res.y = a.y * sinr;
res.z = a.z * sinr;
res.w = cosr;
return res;
}
////////////////////////////////////////////////////////////////
// EOF